Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake


Historical accounts describe an earthquake and tsunami on 21 July AD 365 that destroyed cities and drowned thousands of people in coastal regions from the Nile Delta to modern-day Dubrovnik. The location and tectonic setting of this earthquake have been uncertain until now. Here, we present evidence from radiocarbon data and field observations that western Crete was lifted above sea level, by up to 10 m, synchronously with the AD 365 earthquake. The distribution of uplift, combined with observations of present-day seismicity, suggest that this earthquake occurred not on the subduction interface beneath Crete, but on a fault dipping at about 30 within the overriding plate. Calculations of tsunami propagation show that the uplift of the sea floor associated with such an earthquake would have generated a damaging tsunami through much of the eastern Mediterranean. Measurement of the present rate of crustal shortening near Crete yields an estimate of 5,000 yr for the repeat time of tsunamigenic events on this single fault in western Crete, but if the same process takes place along the entire Hellenic subduction zone, such events may occur approximately once every 800 yr.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location maps for this study.
Figure 2: Seismicity and topography in the area of Crete.
Figure 3: Observed and modelled uplift associated with the AD 365 earthquake.
Figure 4: Tsunami calculation.
Figure 5: Schematic diagram of tectonic setting of the AD 365 earthquake.


  1. 1

    Ambraseys, N. N., Melville, C. P. & Adams, R. D. The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  2. 2

    Elias, A. et al. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic AD 551 Beirut-Tripoli earthquake. Geology 35, 755–758 (2007).

    Article  Google Scholar 

  3. 3

    Salamon, A., Rockwell, T., Ward, S. N., Guidoboni, E. & Comastri, A. Tsunami hazard evaluation of the Eastern Mediterranean: Historical analysis and selected modeling. Bull. Seismol. Soc. Am. 97, 705–724 (2007).

    Article  Google Scholar 

  4. 4

    Jackson, J. & McKenzie, D. The relationship between plate motions and seismic moment tensors, and rates of active deformation in the Mediterranean and Middle East. Geophys. J+ 93, 45–73 (1988).

    Article  Google Scholar 

  5. 5

    Spratt, T. A. B. Travels and Researches in Crete Vol. 2 (J. van Voorst, London, 1865).

    Google Scholar 

  6. 6

    Pirazzoli, P. A., Thommeret, J., Thommeret, Y., Laborel, J. & Montaggioni, L. F. Crustal block movements from Holocene shorelines: Crete and Antikithera (Greece). Tectonophysics 86, 27–43 (1982).

    Article  Google Scholar 

  7. 7

    Pirazzoli, P. A., Ausseil-Badie, J., Giresse, P., Hadjidaki, E. & Arnold, M. Historical environmental changes at Phalasarna harbour, West Crete. Geoarcheology 7, 371–392 (1992).

    Article  Google Scholar 

  8. 8

    Pirazzoli, P. A., Laborel, J. & Stiros, S. C. Earthquake clustering in the Eastern Mediterranean during historical times. J. Geophys. Res. 101, 6083–6097 (1996).

    Article  Google Scholar 

  9. 9

    Papazachos, B. C. Large seismic faults in the Hellenic arc. Ann. Geofis. 39, 891–903 (1996).

    Google Scholar 

  10. 10

    England, P. & Molnar, P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177 (1990).

    Article  Google Scholar 

  11. 11

    Thommeret, Y., Thommeret, J., Laborel, J., Montaggioni, L. F. & Pirazzoli, P. A. Late Holocene shoreline changes and seismo-tectonic displacements in western Crete (Greece). Z. Geomorphol. 40, 127–149 (1981).

    Google Scholar 

  12. 12

    Price, S., Higham, T., Nixon, L. & Moody, J. Relative sea-level changes: reassessment of radiocarbon dates from Sphakia and west Crete. Annual—British School at Athens 97, 171–200 (2002).

    Article  Google Scholar 

  13. 13

    Taymaz, T., Jackson, J. & Westaway, R. Earthquake mechanisms in the Hellenic Trench near Crete. Geophys J. Int. 102, 695–731 (1990).

    Article  Google Scholar 

  14. 14

    Mascle, J. & Chaumillon, E. An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data. Geo-Mar. Lett. 18, 81–89 (1998).

    Article  Google Scholar 

  15. 15

    Okada, Y. Internal deformation due to shear and tensile faults in a half space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  16. 16

    De Chabalier, J. B. et al. A detailed analysis of microearthquakes in western Crete from digital three-component seismograms. Geophys. J. Int. 110, 347–360 (1992).

    Article  Google Scholar 

  17. 17

    Meier, T., Rische, M., Endrun, B., Vafidis, A. & Harjes, H.-P. Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383, 149–169 (2004).

    Article  Google Scholar 

  18. 18

    Tichelaar, B. W. & Ruff, L. J. Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2017–2038 (1993).

    Article  Google Scholar 

  19. 19

    Pirazzoli, P. A. The early Byzantine tectonic paroxysm. Z. Geomorphol. 62, 31–49 (1986).

    Google Scholar 

  20. 20

    Stiros, S. C. & Drakos, A. A fault model for the tsunami-associated, magnitude ≥8.5 Eastern Mediterranean, AD 365 earthquake. Z. Geomorphol. 146, 125–137 (2006).

    Google Scholar 

  21. 21

    Wang, R., Lorenzo-Martin, F. & Roth, F. PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 32, 527–541 (2006).

    Article  Google Scholar 

  22. 22

    Scholz, C. H, Aviles, C. A. & Wesnousky, S. G. Scaling differences between large interplate and intraplate earthquakes. Bull. Seismol. Soc. Am. 76, 65–70 (1986).

    Google Scholar 

  23. 23

    Subarya, C. et al. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 440, 46–51 (2006).

    Article  Google Scholar 

  24. 24

    Bilham, R. & England, P. Plateau pop-up in the great 1897 Assam earthquake. Nature 410, 806–809 (2001).

    Article  Google Scholar 

  25. 25

    Gower, J. Jason 1 detects the 26 December 2004 tsunami. EOS trans. AGU 86, 37–38 (2005).

    Article  Google Scholar 

  26. 26

    Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P. R. & Kaneda, Y. Splay fault branching along the Nankai subduction zone. Science 297, 1157–1160 (2002).

    Article  Google Scholar 

  27. 27

    Moore, G. F. et al. Three-dimensional splay fault geometry and implications for tsunami generation. Science 318, 1128–1131 (2007).

    Article  Google Scholar 

  28. 28

    Plafker, G. Tectonic deformation associated with the 1964 Alaska earthquake. Science 148, 1675–1687 (1965).

    Article  Google Scholar 

  29. 29

    Ichinose, G., Somerville, P., Thio, H. K., Graves, R. & O’Connell, D. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data. J. Geophys. Res. 112, B07306 (2007).

    Google Scholar 

  30. 30

    Le Pichon, X. & Angelier, J. The Aegean Sea. Phil. Trans. R. Soc. A 300, 357–372 (1981).

    Article  Google Scholar 

  31. 31

    Endrun, B, Meier, T., Bischoff, M. & Harjes, H.-P. Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophys. J. Int. 158, 592–608 (2004).

    Article  Google Scholar 

  32. 32

    Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003).

    Article  Google Scholar 

  33. 33

    Hamouda, A. Z. Numerical computations of 1303 tsunamigenic propagation towards Alexandria, Egyptian Coast. J. Afr. Earth Sci. 44, 37–44 (2006).

    Article  Google Scholar 

  34. 34

    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).

    Article  Google Scholar 

  35. 35

    Bronk Ramsey, C. & Hedges, R. E. M. Hybrid ion sources: Radiocarbon measurements from microgram to milligram. Nucl. Instrum. Methods B 123, 539–545 (1997).

    Article  Google Scholar 

  36. 36

    Bronk Ramsey, C., Pettitt, P. B., Hedges, R. E. M., Hodgins, G. W. L. & Owen, D. C. Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 29. Archaeometry 42, 243–254 (2000).

    Article  Google Scholar 

  37. 37

    Bronk Ramsey, C., Higham, T. F. G. & Leach, P. Towards high precision AMS: Progress and limitations. Radiocarbon 46, 17–24 (2004).

    Article  Google Scholar 

  38. 38

    Hughen, K. A. et al. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1059–1086 (2004).

    Article  Google Scholar 

  39. 39

    Reimer, P. J. & McCormac, F. G. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44, 159–166 (2002).

    Article  Google Scholar 

  40. 40

    Hughen, K., Southon, J., Lehman, S., Bertrand, C. & Turnbull, J. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quat. Sci. Rev. 25, 3216–3227 (2006).

    Article  Google Scholar 

  41. 41

    Ford, R. et al. A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: Model formulation. Mon. Weath. Rev 132, 2816–2831 (2004).

    Article  Google Scholar 

  42. 42

    Gorman, G. J. et al. Optimal bathymetric representation through constrained unstructured mesh adaptivity. Ocean Modell. 12, 436–452 (2006).

    Article  Google Scholar 

  43. 43

    Fischer, K. D. & Babeyko, A. Modelling the 365 AD Crete earthquake and its tsunami. Geophys. Res. Abs. 9, 09458 (2007).

    Google Scholar 

  44. 44

    Herring, T. A., King, R. W. & McClusky, S. C. GAMIT Reference Manual: GPS Analysis at MIT, Release 10.3 (Department of Earth, Atmospheric, and Planetary Sciences, Massachussetts Institute of Technology, Cambridge, 2006).

    Google Scholar 

  45. 45

    Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. & Boucher, C. ITRF2007: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. 112, B09401 (2007).

    Article  Google Scholar 

  46. 46

    Herring, T. A., King, R. W. & McClusky, S. C. GLOBK Reference Manual: Global Kalman Filter VLBI and GPS Analysis Program, Release 10.3 (Department of Earth, Atmospheric, and Planetary Sciences, Massachussetts Institute of Technology, Cambridge, 2006).

    Google Scholar 

  47. 47

    Reilinger, R. et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collisional zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411 (2006).

    Article  Google Scholar 

  48. 48

    Engdahl, E. R., Van der Hilst, R. D. & Buland, R. P. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

  49. 49

    Jost, M. L., Knabenbauer, O., Cheng, J. & Harjes, H.-P. Fault plane solutions of microearthquakes and small events in the Hellenic arc. Tectonophysics 356, 87–114 (2002).

    Article  Google Scholar 

  50. 50

    Hatzfeld, D., Besnard, M., Makropoulos, K. & Hatzidimitriou, P. Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications. Geophys. J. Int. 115, 799–818 (1993).

    Article  Google Scholar 

Download references


This work was supported by NERC, through grant NER/A/S/2001/01607 to P.C.E., and to COMET. M.D.P., G.J.G. and C.C.P. acknowledge the support of NERC under grants NE/C51829X/1 and NE/C52101X/1. We are indebted to H. Billiris, D. Paradisis and C. Raptakis for their support in the establishment and maintenance of the continuous GPS network whose results we use here, and to N. Forrest and M. Ziebart for many helpful discussions about processing continuous GPS data. We thank D. Hatzfeld for providing microearthquake data. We thank M. Brasier, N. Charnley, J. Darrell, O. Green, B. Rosen, P. Taylor, A. Thomas and the staff of the Oxford Radiocarbon Accelerator Unit, for their help in obtaining 14C dates, with species identification and with sample preparation and imaging. We thank D. Ham for advice on computational modelling. We are grateful to R. Bilham, S. Lamb and P. Molnar for comments that improved the manuscript.

Author information




N.N.A., P.C.E., J.A.J. and B.S. were involved in project planning. P.C.E., T.F.G.H., J.A.J. and B.S. carried out the field work and sampling. G.J.G., C.C.P. and M.D.P. are responsible for the tsunami modelling, and M.A.F. and J.-M.N. carried out the GPS analysis. T.F.G.H. is responsible for the radiocarbon dating. N.N.A. researched historical references to the earthquake.

Corresponding author

Correspondence to B. Shaw.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2 (PDF 2070 kb)

Supplementary Information

Supplementary video S2 (AVI 1545 kb)

Supplementary Information

Supplementary video S3 (AVI 3450 kb)

Supplementary Information

Supplementary video S4 (AVI 1501 kb)

Supplementary Information

Supplementary video S5 (AVI 3372 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shaw, B., Ambraseys, N., England, P. et al. Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geosci 1, 268–276 (2008). https://doi.org/10.1038/ngeo151

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing