Morphology and dynamics of star dunes from numerical modelling


Star dunes are giant, pyramid-shaped dunes composed of interlaced arms. These arms are marked by sinuous crests and slip faces of various directions1,2. Their radial symmetry and scale suggest that the star dunes form as a result of complex interactions between a multidirectional wind regime and topography3,4. However, despite their ubiquity in modern sand seas5,6, comparatively little is known about their formation and evolution. Here we present a discrete numerical model of star-dune behaviour based on the feedback mechanisms between wind flow and bedform dynamics7. Our simulations indicate that the morphology of star dunes results from the combination of individual longitudinal dunes. We find that the arms of the star dunes propagate only under favourable wind regimes. In contrast to dunes that form from an erodible bed8, the crests of the propagating arms are oriented such that sand flux is maximized in the direction of arm growth. Our analysis of the simulated three-dimensional structures suggests that the morphodynamics of the arms are controlled by the frequency of wind reorientation, with a high frequency of reorientation leading to smaller arm dimension and high rates of growth. We suggest that arm propagation is an important process of mass exchange in dune fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Star dunes using a real-space cellular automaton model.
Figure 2: Formation and evolution of star dunes using multidirectional wind regimes.
Figure 3: Star-dune morphodynamics.
Figure 4: Effect of the frequency of wind reorientation on arm growth.


  1. 1

    Wasson, R. & Hyde, R. Factors determining desert dune type. Nature 304, 337–339 (1983).

    Article  Google Scholar 

  2. 2

    Lancaster, N. Star dunes. Prog. Phys. Geogr. 13, 67–91 (1989).

    Article  Google Scholar 

  3. 3

    Lancaster, N. The dynamics of star dunes: An example from the Gran Desertio, Mexico. Sedimentology 36, 273–289 (1989).

    Article  Google Scholar 

  4. 4

    Zhang, W., Qu, J., Dong, Z., Li, X. & Wang, W. The air flow field and dynamic processes of pyramid dunes. J. Arid Environ. 45, 357–368 (2000).

    Article  Google Scholar 

  5. 5

    Nielson, J. & Kocurek, G. Surface processes, deposits, and development of star dunes: Dumont dune field, California. Geol. Soc. Am. Bull. 99, 177–186 (1987).

    Article  Google Scholar 

  6. 6

    Lancaster, N. Geomorphology of Desert Dunes (Routledge, 1995).

    Google Scholar 

  7. 7

    Narteau, C., Zhang, D., Rozier, & Claudin, P. Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms. J. Geophys. Res. 114, F03006 (2009).

    Article  Google Scholar 

  8. 8

    Rubin, D. & Hunter, R. Bedform alignment in directionally varying flows. Science 237, 276–278 (1987).

    Article  Google Scholar 

  9. 9

    Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, 1941).

    Google Scholar 

  10. 10

    Pye, K. & Tsoar, H. Aeolian Sand and Sand Dunes (Unwin Hyman, 1990).

    Google Scholar 

  11. 11

    Lancaster, N. in Eolian Sediments and Processes (eds Brookfield, M. E. & Ahlbrandt, T. S.) 261–289 (Elsevier, 1983).

    Google Scholar 

  12. 12

    Breed, C. & Grow, T. in A Study of Global Sand Seas (ed. McKee, E.) 252–302 (Professional Paper 1052, US Geological Survey, 1979).

  13. 13

    Hersen, P., Douady, S. & Andreotti, B. Relevant length scale of barchan dunes. Phys. Rev. Lett. 89, 264301 (2002).

    Article  Google Scholar 

  14. 14

    Elbelrhiti, H., Claudin, P. & Andreotti, B. Field evidence for surface-wave-induced instability of sand dunes. Nature 437, 720–723 (2005).

    Article  Google Scholar 

  15. 15

    Andreotti, B., Fourrière, A., Ould-Kaddour, F., Murray, B. & Claudin, P. Size of giant dunes limited by the depth of the atmospheric boundary layer. Nature 457, 1120–1123 (2009).

    Article  Google Scholar 

  16. 16

    Werner, B. T. Eolian dunes: Computer simulations and attractor interpretation. Geology 23, 1107–1111 (1995).

    Article  Google Scholar 

  17. 17

    Hersen, P. Flow effects on the morphology and dynamics of aeolian and subaqueous barchan dunes. J. Geophys. Res. 110, F04S07 (2005).

    Article  Google Scholar 

  18. 18

    Parteli, E. J. R., Durán, O., Tsoar, H., Schwämmle, V. & Herrmann, H. J. Dune formation under bimodal winds. Proc. Natl Acad. Sci. USA 106, 22085–22089 (2009).

    Article  Google Scholar 

  19. 19

    Rubin, D. & Ikeda, H. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37, 673–684 (1990).

    Article  Google Scholar 

  20. 20

    Reffet, E., Courrech du Pont, S., Hersen, P. & Douady, S. Formation and stability of transverse and longitudinal sand dunes. Geology 38, 491–494 (2010).

    Article  Google Scholar 

  21. 21

    Taniguchi, K., Endo, N. & Sekiguchi, H. in EGU General Assembly Conference Abstracts Vol. 11 (eds Arabelos, D. N. & Tscherning, C. C.) abstr. 6531 (2009).

    Google Scholar 

  22. 22

    Zhang, D., Narteau, C. & Rozier, O. Morphodynamics of barchan and transverse dunes using a cellular automaton model. J. Geophys. Res. 115, F03041 (2010).

    Article  Google Scholar 

  23. 23

    Frisch, U., Hasslacher, B. & Pomeau, Y. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505–1508 (1986).

    Article  Google Scholar 

  24. 24

    Cooke, R., Warren, A. & Goudie, A. Desert Geomorphology (UCL Press, 1993).

    Google Scholar 

  25. 25

    Hersen, P. et al. Corridors of barchan dunes: Stability and size selection. Phys. Rev. E 69, 011304 (2004).

    Article  Google Scholar 

  26. 26

    Bristow, C. S., Bailey, S. D. & Lancaster, N. The sedimentary structure of linear sand dunes. Nature 406, 56–59 (2000).

    Article  Google Scholar 

  27. 27

    Edgett, K. S. & Blumberg, D. G. Star and linear dunes on mars. Icarus 112, 448–464 (1994).

    Article  Google Scholar 

  28. 28

    Claudin, P. & Andreotti, B. A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet Sci. Lett. 252, 30–44 (2006).

    Article  Google Scholar 

  29. 29

    Breed, C., Grolier, M. & McCauley, J. Morphology and distribution of common sand dunes on Mars: Comparison with the Earth. J. Geophys. Res. 84, 8183–8204 (2006).

    Article  Google Scholar 

  30. 30

    Bourke, M. C. Barchan dune asymmetry: Observations from Mars and Earth. Icarus 205, 183–197 (2010).

    Article  Google Scholar 

Download references


We acknowledge financial support from the LabEx UnivEarthS, a Paris Diderot BQR grant, the French National Research Agency (grant ANR-09-RISK-004/GESTRANS) and the National Natural Science Foundation of China (grant 40930105). We thank S. Rodriguez for commenting on the manuscript. Images of Fig. 1 are courtesy of Google Earth and B. Andreotti.

Author information




D.Z. carried out all numerical simulations and statistical data analysis. O.R. developed the real-space cellular automaton, a free sofware under GNU general public license. C.N. and S.C.d.P. designed the study and wrote the manuscript. All authors discussed the results.

Corresponding authors

Correspondence to Clément Narteau or Sylvain Courrech du Pont.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2128 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, D., Narteau, C., Rozier, O. et al. Morphology and dynamics of star dunes from numerical modelling. Nature Geosci 5, 463–467 (2012).

Download citation

Further reading