Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic imaging of a large horizontal vortex at abyssal depths beneath the Sub-Antarctic Front

Abstract

The global ocean and climate systems are strongly influenced by physical oceanographic processess within the Southern Ocean1. In particular, the exchange of water between subtropical North Atlantic Deep Water and the Antarctic Circumpolar Current controls the rate at which the latter upwells and mixes2. Despite its significance, the details of this exchange are poorly understood. Acoustic imaging of the water column can reveal the detailed thermohaline structure3. Here we present a subsurface acoustic image, acquired in October 1998, that crosses the Sub-Antarctic Front in the South Atlantic Ocean, where the two water masses converge and shear past each other. We find that down to a depth of 2.5 km, the vertical boundary between the North Atlantic Deep Water and the Antarctic Circumpolar Current is sharp and mass exchange is negligible. Below this depth, where cross-track velocities converge, we detect a prominent swirling structure that is 500 m high and 10 km wide. We analyse prestack acoustic records, which suggest that this structure rotates at an average speed of 0.3±0.1 m s−1 about a horizontal axis. We suggest that the structure could either be a thermohaline intrusion created by frontal instability processes, or—more speculatively—a localized and intermittent overturning event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of southern Atlantic Ocean.
Figure 2: Seismic image of water masses in the southern Atlantic Ocean.
Figure 3: Swirling structure at abyssal depths.
Figure 4: Idealized sketch of the southern Atlantic Ocean.

Similar content being viewed by others

References

  1. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  2. Jullion, L., Heywood, K. J., Naveira Garabato, A. C. & Stevens, D. P. Circulation and water mass modification in the Brazil–Malvinas confluence. J. Phys. Oceanogr. 40, 845–864 (2010).

    Article  Google Scholar 

  3. Ruddick, B., Song, H., Dong, C. & Pinheiro, L. Water column seismic images as maps of temperature gradient. Oceanography 22, 192–205 (2009).

    Article  Google Scholar 

  4. Orsi, A. H., Whitworth, T. III, Worth, D. & Nowlin, W. D. Jr On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea. Res. I 42, 641–673 (1995).

    Article  Google Scholar 

  5. Naveira Garabato, A. C., Polzin, K. L., King, B. A., Heywood, K. J. & Visbeck, M. Widespread intense turbulent mixing in the Southern Ocean. Science 303, 210–213 (2004).

    Article  Google Scholar 

  6. Piola, A. R. & Georgi, D. Circumpolar properties of Antarctic Intermediate Waters and Subantarctic Mode Water. Deep Sea Res. 29, 687–711 (1982).

    Article  Google Scholar 

  7. Peterson, R. G. & Whitworth, T. III The Subantarctic and Polar Fronts in relation to deep water masses through the Southwestern Atlantic. J. Geophys. Res. 94, 10817–10838 (1989).

    Article  Google Scholar 

  8. Arhan, M., Heywood, K. J. & King, B. A. The deep waters from the Southern Ocean at the entry to the Argentine Basin. Deep-Sea Res. II 46, 475–499 (1999).

    Article  Google Scholar 

  9. Klaeschen, D., Hobbs, R. W., Krahmann, G., Papenberg, C. & Vsemirnova, E. Estimating movement of reflectors in the water column using seismic oceanography. Geophys. Res. Lett. 36, L00D03 (2009).

    Article  Google Scholar 

  10. Sheen, K. L., White, N. J., Caulfield, C. P. & Hobbs, R. W. Estimating geostrophic shear from seismic images of oceanic structure. J. Atmos. Oceanic Technol. 28, 1149–1154 (2011).

    Article  Google Scholar 

  11. Pinheiro, L.M. et al. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data. J. Marine. Syst. 79, 89–100 (2010).

    Article  Google Scholar 

  12. Krahmann, G., Brandt, P., Klaeschen, D. & Reston, T. Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data. Geophys. Res. Lett. 113, C12016 (2008).

    Article  Google Scholar 

  13. Sheen, K. L., White, N. J. & Hobbs, R. W. Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett. 36, L00D04 (2009).

    Article  Google Scholar 

  14. Bower, A. S., Rossby, H. T. & Lillibridge, J. L. The Gulf Stream—barrier of blender? J. Phys. Oceanogr. 15, 24–32 (1985).

    Article  Google Scholar 

  15. Sundermeyer, M. A., Ledwell, J. R., Oakey, N. S. & Greenan, B. J. W. Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr. 35, 1245–1262 (2005).

    Article  Google Scholar 

  16. Smith, K. S. & Ferrari, R. The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr. 39, 2477–2501 (2009).

    Article  Google Scholar 

  17. Woods, J. D., Onken, R. & Fischer, J. Thermohaline intrusions created isopycnally at oceanic fronts are inclined to isopycnals. Nature 322, 446–449 (1986).

    Article  Google Scholar 

  18. MacVean, M. K. & Woods, J. D. Redistribution of scalars during upper ocean frontogenesis: A numerical model. Q. J. R. Meteorol. Soc. 106, 293–311 (1980).

    Article  Google Scholar 

  19. Klein, P., Treguier, A-M. & Hua, B. L. Three-dimensional stirring of thermohaline fronts. J. Marine Res. 56, 589–612 (1998).

    Article  Google Scholar 

  20. Arhan, M., Carton, X., Piola, A. & Zenk, W. Deep lenses of circumpolar water in the Argentine Basin. J. Geophys. Res. 107, 3007 (2002).

    Article  Google Scholar 

  21. Riley, J. J. & Lindborg, E. Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65, 2416–2424 (2008).

    Article  Google Scholar 

  22. Lindborg, E. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242 (2006).

    Article  Google Scholar 

  23. Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J-M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343–368 (2007).

    Article  Google Scholar 

  24. Molemaker, M. J & McWilliams, J. C. Local balance and cross-scale flux of available potential energy. J. Fluid Mech. 645, 295–314 (2010).

    Article  Google Scholar 

  25. Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K. & Thurnherr, A. M. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr. 36, 1553–1576 (2006).

    Article  Google Scholar 

  26. Wells, M., Cenedese, C. & Caulfield, C. P. The relationship between flux coefficient and entrainment ratio in density currents. J. Phys. Oceanogr. 40, 2713–2727 (2010).

    Article  Google Scholar 

  27. Thorpe, S. A. Turbulence and mixing in a Scottish loch. Phil. Trans. R. Soc. Lond. 286A, 125–181 (1977).

    Article  Google Scholar 

  28. Dillon, T. M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87, 9601–9613 (1982).

    Article  Google Scholar 

  29. Alford, M. H. Sustained, full-water-column observations of internal waves and mixing near mendicino escarpment. J. Phys. Oceanogr. 40, 2643–2660 (2010).

    Article  Google Scholar 

  30. Klymak, J. M. & Moum, J. N. Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr. 37, 1232–1245 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

K.L.S. was supported by the NERC UK and by Schlumberger Cambridge Research. Seismic acquisition was financially supported by the NERC. We thank P. Christie, A. Crosby, T. Hesse, K. Heywood, R. Jones, S. Jones, D. Koenitz, D. Lyness, A. Naveira Garabato, C. Richardson, S. Thorpe and C. Trowell for their help. S. Jones and R. Hardy discussed methods of velocity analysis with us. J. B. Sallée provided an incisive review. Department of Earth Sciences contribution number esc.2511.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by N.J.W. who acquired the seismic data. Processing and analysis was carried out by K.L.S. with guidance from N.J.W., C.P.C. and R.W.H. N.J.W. wrote the paper in conjunction with K.L.S. and C.P.C. K.L.S. and N.J.W. drew the figures.

Corresponding authors

Correspondence to K. L. Sheen or N. J. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheen, K., White, N., Caulfield, C. et al. Seismic imaging of a large horizontal vortex at abyssal depths beneath the Sub-Antarctic Front. Nature Geosci 5, 542–546 (2012). https://doi.org/10.1038/ngeo1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing