An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland

Abstract

Widespread retreat of glaciers has been observed along the southeastern margin of Greenland. This retreat has been associated with increased air and ocean temperatures. However, most observations are from the satellite era; presatellite observations of Greenlandic glaciers are rare. Here we present a unique record that documents the frontal positions for 132 southeast Greenlandic glaciers from rediscovered historical aerial imagery beginning in the early 1930s. We combine the historical aerial images with both early and modern satellite imagery to extract frontal variations of marine- and land-terminating outlet glaciers, as well as local glaciers and ice caps, over the past 80 years. The images reveal a regional response to external forcing regardless of glacier type, terminal environment and size. Furthermore, the recent retreat was matched in its vigour during a period of warming in the 1930s with comparable increases in air temperature. We show that many land-terminating glaciers underwent a more rapid retreat in the 1930s than in the 2000s, whereas marine-terminating glaciers retreated more rapidly during the recent warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Historical aerial photographs from the seventh Thule Expedition, 1933.
Figure 2: Frontal changes of southeast Greenland glaciers.
Figure 3: Average frontal changes of glaciers and temperature records.
Figure 4: Retreat-rate difference between the large retreat periods 1933–1943 and 2000–2010.
Figure 5: A closer look at marine- and land-terminating glaciers.

References

  1. 1

    Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobshavn Isbrae Glacier. Nature 432, 608–610 (2004).

    Article  Google Scholar 

  2. 2

    Howat, I. M., Joughin, I., Tulaczyk, S. & Gogineni, S. Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett. 32, L22502 (2005).

    Article  Google Scholar 

  3. 3

    Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci. 2, 110–114 (2009).

    Article  Google Scholar 

  4. 4

    Vieli, A. & Nick, F. M. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surv. Geophys. 32, 437–458 (2011).

    Article  Google Scholar 

  5. 5

    Howat, I. M., Joughin, I. & Scambos, T. A. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315, 1559–1561 (2007).

    Article  Google Scholar 

  6. 6

    Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in east Greenland. Geophys. Res. Lett. 33, L03503 (2006).

    Article  Google Scholar 

  7. 7

    Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 311, 986–990 (2006).

    Article  Google Scholar 

  8. 8

    Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

    Article  Google Scholar 

  9. 9

    Murray, T. et al. Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res. 115, F03026 (2010).

    Article  Google Scholar 

  10. 10

    Velicogna, I. & Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature 443, 329–331 (2006).

    Article  Google Scholar 

  11. 11

    Chen, J. L., Wilson, C. R. & Tapley, B. D. Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313, 1958–1960 (2006).

    Article  Google Scholar 

  12. 12

    Luthcke, S. B. et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314, 1286–1289 (2006).

    Article  Google Scholar 

  13. 13

    Rignot, E., Box, J. E., Burgess, E. & Hanna, E. Mass balance of the Greenland Ice Sheet from 1958 to 2007. Geophys. Res. Lett. 35, L20502 (2008).

    Article  Google Scholar 

  14. 14

    Khan, S. A. et al. Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys. Res. Lett. 34, L21701 (2007).

    Article  Google Scholar 

  15. 15

    Straneo, F. et al. Rapid circulation of warm subtropical waters in a major glacial fjord in east Greenland. Nature Geosci. 3, 182–186 (2010).

    Article  Google Scholar 

  16. 16

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  Google Scholar 

  17. 17

    Seale, A., Christoffersen, P., Mugford, R. I. & O’Leary, M. Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. 116, F03013 (2011).

    Article  Google Scholar 

  18. 18

    Mernild, S. H. et al. Increasing mass loss from Greenland’s Mittivakkat Gletscher. Cryosphere 5, 341–348 (2011).

    Article  Google Scholar 

  19. 19

    Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E. & Scambos, T. A. Synchronous retreat and acceleration of southeast Greenland outletglaciers 2000–06: Ice dynamics and coupling to climate. J. Glaciol. 54, 646–660 (2008).

    Article  Google Scholar 

  20. 20

    Moon, T. & Joughin, I. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. 113, F02022 (2008).

    Article  Google Scholar 

  21. 21

    Howat, I. M. & Eddy, A. Multi-decadal retreat of Greenland’ s marine-terminating glaciers. J. Glaciol. 57, 1–8 (2011).

    Article  Google Scholar 

  22. 22

    Dwyer, J. Mapping tide-water glacier dynamics in east Greenland using Landsat data. J. Glaciol. 41, 584–595 (1995).

    Article  Google Scholar 

  23. 23

    Weidick, A. Satellite Image Atlas of Glaciers of the World GREENLAND USGS Professional Paper 1386-C (United States Government Printing Office, 1995).

    Google Scholar 

  24. 24

    Weidick, A. Historical fluctuations of calving glaciers in south and west Greenland. Rapp. Geol. Surv. Greenland 161, 73–79 (1994).

    Google Scholar 

  25. 25

    Gabel-Jørgensen, C. A. A. Dr. Knud Rasmussen’s contribution to the exploration of the south-east coast of Greenland, 1931–1933. Geogr. J. 86, 32–49 (1935).

    Article  Google Scholar 

  26. 26

    Gabel-Jørgensen, C. A. A. Report on the Expedition - 6. og 7. Thule-Expedition til Sydøstgrønland 1931–1933. Meddelelser om Grønland 106, 1–270 (1940).

    Google Scholar 

  27. 27

    Howat, I. M., Box, J. E., Ahn, Y., Herrington, A. & Mcfadden, E. M. Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol. 56, 601–613 (2010).

    Article  Google Scholar 

  28. 28

    Wake, L. M. et al. Surface mass-balance changes of the Greenland Ice Sheet since 1866. Ann. Glaciol. 50, 178–184 (2009).

    Article  Google Scholar 

  29. 29

    Box, J. E. et al. Greenland [in “State of the Climate in 2010”]. Bull. Am. Meteorol. Soc. 92, 161–171 (2011).

    Google Scholar 

  30. 30

    Chylek, P., Dubey, M. K. & Lesins, G. Greenland warming of 1920–1930 and 1995–2005. Geophys. Res. Lett. 33, L11707 (2006).

    Article  Google Scholar 

  31. 31

    Box, J. E., Yang, L., Bromwich, D. H. & Bai, L. Greenland Ice Sheet surface air temperature variability: 1840–2007. J. Clim. 22, 4029–4049 (2009).

    Article  Google Scholar 

  32. 32

    Wood, K. R. & Overland, J. E. Early 20th century Arctic warming in retrospect. Int. J. Climatol. 30, 1269–1279 (2009).

    Google Scholar 

  33. 33

    Wild, M. et al. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    Article  Google Scholar 

  34. 34

    Andresen, C. S. et al. Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geosci. 5, 37–41 (2012).

    Article  Google Scholar 

  35. 35

    Amundson, J. M. et al. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. 115, F01005 (2010).

    Article  Google Scholar 

  36. 36

    Weidick, A. Present-day expansion of the southern part of the inland ice. Rapp. Geol. Surv. Greenland 152, 73–79 (1991).

    Google Scholar 

  37. 37

    Meier, M. F. & Post, A. Fast tidewater glaciers. J. Geophys. Res. 92, 9051–9058 (1987).

    Article  Google Scholar 

  38. 38

    Box, J. E. Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol. 22, 1829–1847 (2002).

    Article  Google Scholar 

  39. 39

    Larsen, H. V. Runoff studies from the Mitdluagkat Gletcher in SE-Greenland during the late summer 1958. Danish J. Geogr. 58, 54–65 (1959).

    Google Scholar 

  40. 40

    Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci. 4, 1–6 (2011).

    Article  Google Scholar 

  41. 41

    IPCC Climate Change 2007: The Physical Science Basis (Cambridge Univ.Press, 2007).

  42. 42

    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).

    Google Scholar 

  43. 43

    Yde, J. C. & Knudsen, N. T. 20th-century glacier fluctuations on Disko Island (Qeqertarsuaq), Greenland. Ann. Glaciol. 46, 209–214 (2007).

    Article  Google Scholar 

  44. 44

    Jiskoot, H., Juhlin, D., Pierre, H. S. T. & Citterio, M. Tidewater glacier fluctuations in central east Greenland coastal and fjord regions (1980s–2005). Ann. Glaciol. 53, 35–44 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study could not have been possible without the aid of The National Survey and Cadastre (KMS, Denmark) who gave access to the historical photographs from the seventh Thule Expedition. We are also grateful to the Scott Polar Research Institute (UK), and the Arctic Institute (Copenhagen, Denmark) who also supplied access to historical images. A. Pedersen (MapWorks, Denmark) wrote the script for the glacier length tool. Systéme Pour l’Observation de la Terre Spirit DEM was obtained from B. Csatho and S. Nagarajan, Geology Department, University at Buffalo, USA. The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM data were obtained through the online data pool at the National Aeronautics and Space Administration Land Processes Distributed Active Archive Center, United States Geological Survey /Earth Resources Observation and Science Center, Sioux Falls, South Dakota. We thank K. L. Bird and E. Willerslev who edited the manuscript. This work is a part of the RinkProject financially supported by the Danish Research Council (FNU) no. 272-08-0415 and the Commission for Scientific Research in Greenland (KVUG).

Author information

Affiliations

Authors

Contributions

A.A.B. and K.H.K. designed and conducted the study, N.J.K. conducted photogrammetry, K.K.K. undertook the geographic information system analysis, J.E.B., C.S.A. and S.A.K. carried out climate and SST analysis. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Anders A. Bjørk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4368 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bjørk, A., Kjær, K., Korsgaard, N. et al. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geosci 5, 427–432 (2012). https://doi.org/10.1038/ngeo1481

Download citation

Further reading