Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers


Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a ‘cryosphere cap’ that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200 Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5 Pg. As such, the Earth’s climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The effect on lake ice formation of subcap and superficial seeps.
Figure 2: Alaska map of surveyed methane seeps.
Figure 3: Distinctions between seep types based on bubbling rates and isotope compositions.
Figure 4: Subcap (macroseep) and superficial methane seep emissions in Alaska.
Figure 5: Spatial association of subcap-seep sites with fluvial deposits in northern continuous permafrost and with faults near glaciers in southcentral Alaska.
Figure 6: Subcap seep methane stable isotopes and radiocarbon age in relation to faults in the Lake Eyak region of southcentral Alaska.


  1. 1

    McGuire, D. A. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    Article  Google Scholar 

  2. 2

    Gautier, D. L. et al. Assessment of undiscovered oil and gas in the arctic. Science 324, 1174–1179 (2009).

    Article  Google Scholar 

  3. 3

    Collett, T. S. et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Mar. Petrol. Geol. 28, 279–294 (2011).

    Article  Google Scholar 

  4. 4

    Flores, R. M., Stricker, G. D. & Kinney, S. A. Alaska Coal Geology, Resources, and Coalbed Methane Potential (US Dept. Interior Rep., USGS Digital Data Series DDS-77, v.1.0., 2004).

  5. 5

    Isaksen, I. S. A., Gauss, M., Myhre, G., Walter Anthony, K. M. & Ruppel, C. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob. Biogeochem. Cycles 25, GB2002 (2011).

    Article  Google Scholar 

  6. 6

    Clarke, R. & Cleverly, R. in Petroleum Migration (eds England, W. & Fleet, A.) 265–271 (Geological Society Special Publication No. 59, GeologicalSociety, 1991).

    Google Scholar 

  7. 7

    Hunt, J. M. Petroleum Geochemistry and Geology 2nd edn (W.H. Freeman, 1996).

  8. 8

    Lacroix, A. V. Unaccounted for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory. Chemosphere 26, 507–557 (1993).

    Article  Google Scholar 

  9. 9

    Romanovskii, N. N. et al. Environmental evolution in the Laptev Sea region during Late Pleistocene and Holocene. Polarforschung 68, 237–245 (2000).

    Google Scholar 

  10. 10

    Etiope, G., Milkov, A. & Derbyshire, E. Did geologic emissions of methane play any role in Quaternary climate change? Glob. Planet. Change 22, 79–88 (2008).

    Article  Google Scholar 

  11. 11

    Lerche, I., Yu, Z., Torudbakken, B. & Thomsen, R. O. Ice loading effects in sedimentary basins with reference to the Barents Sea. Mar. Petrol. Geol. 14, 277–338 (1997).

    Article  Google Scholar 

  12. 12

    US Environmental Protection Agency. Methane and Nitrous Oxide Emissions From Natural Sources (US EPA, Office of Atmospheric Programs, Climate Change Division, 2010).

  13. 13

    Formolo, M. J., Salacup, J. M., Petsch, S. T., Martini, A. M. & Nüsslein, K. A new model linking atmospheric methane sources to Pleistocene glaciation via methanogenesis in sedimentary basins. Geology 36, 139–142 (2008).

    Article  Google Scholar 

  14. 14

    Grassmann, S. et al. pT-effects of Pleistocene glacial periods on permafrost, gas hydrate stability zones and reservoir of the Mittelplate oil field, northern Germany. Mar. Petrol. Geol. 27, 298–306 (2010).

    Article  Google Scholar 

  15. 15

    Yakushev, V. S. & Chuvilin, E. M. Natural gas and hydrate accumulations within permafrost in Russia. Cold Regions Sci. Technol. 31, 189–197 (2000).

    Article  Google Scholar 

  16. 16

    Bowen, R. G., Dallimore, S. R., Cote, M. M., Wright, J. F. & Lorenson, T. D. in Proc. Ninth International Conference on Permafrost (eds Kane, D. L. &Hinkel, K. M.) 171–176 (Institute of Northern Engineering, 2008).

    Google Scholar 

  17. 17

    Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. III. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Article  Google Scholar 

  18. 18

    Bastviken, D. L., Tranvik, J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  Google Scholar 

  19. 19

    Zimov, S. A. et al. North Siberian lakes: A methane source fueled by Pleistocene carbon. Science 277, 800–802 (1997).

    Article  Google Scholar 

  20. 20

    Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).

    Article  Google Scholar 

  21. 21

    Judd, A. G. Natural seabed gas seeps as sources of atmospheric methane. Environ. Geol. 46, 988–996 (2004).

    Article  Google Scholar 

  22. 22

    Etiope, G. Natural emissions of methane from geological seepage in Europe. Atm. Environ. 43, 1430–1443 (2009).

    Article  Google Scholar 

  23. 23

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  Google Scholar 

  24. 24

    Etiope, G. & Klusman, R. W. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777–789 (2002).

    Article  Google Scholar 

  25. 25

    Etiope, G. & Klusman, R. Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane. Glob. Planet. Change 72, 265–274 (2010).

    Article  Google Scholar 

  26. 26

    Etiope, G., Lassey, K. R., Klusman, R. & Boschi, E. Re-appraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35, L09307 (2008).

    Article  Google Scholar 

  27. 27

    Johnston, G. H. & Brown, R. G. B. Some observations on permafrost distribution at a lake in the MacKenzie Delta, N.W.T., Canada. Arctic 17, 162–175 (1964).

    Article  Google Scholar 

  28. 28

    Yoshikawa, K., Hinzman, L. D. & Kane, D. L. Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J. Geophys. Res. 112, G04S43 (2007).

    Google Scholar 

  29. 29

    Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America (Geological Survey of Canada Open File 1574, 2003).

  30. 30

    Jorgenson, T. et al. Proc. Ninth International Conference on Permafrost(eds. Kane, D. L. & Hinkel, K. M.) map in scale 1:7,000,000 (Institute of Northern Engineering, Fairbanks, 2008).

  31. 31

    Sauber, J. M. & Molnia, B. F. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska. Glob. Planet. Change 42, 279–293 (2004).

    Article  Google Scholar 

  32. 32

    Elliott, J. L., Larsen, C. F., Freymueller, J. T. & Motyka, R. J. Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements. J. Geophys. Res. 115, B09407 (2010).

    Article  Google Scholar 

  33. 33

    Burruss, R. C., Lillis, P. G. & Collett, T. S. Geochemistry of Natural Gas, North Slope, Alaska: Implications for Future Oil and Gas Resources, NPRA (US Dept Interior Rep., USGS Open-File Report 03-041, 2003).

  34. 34

    Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A. & Ivins, E. R. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560 (2005).

    Article  Google Scholar 

  35. 35

    Molnia, B. F. Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate. Glob. Planet. Change 56, 23–56 (2007).

    Article  Google Scholar 

  36. 36

    Claypool, G. E., Threlkeld, C. N. & Magoon, L. B. Biogenic and thermogenic origins of natural gas in Cook Inlet Basin, Alaska. AAPG Bull. 64, 1131–1139 (1980).

    Google Scholar 

  37. 37

    Forman, S. L., Marin, L., Van der Veen, C., Tremper, C. & Csatho, B. Little Ice Age and neoglacial landforms at the Inland Ice margin, Isungguata Sermia, Kangerlussuaq, west Greenland. Boreas 36, 341–351 (2007).

    Article  Google Scholar 

  38. 38

    Zhuang, Q. et al. Net emissions of CH4 and CO2 in Alaska: Implications for the region’s greenhouse gas budget. Ecol. Appl. 17, 203–212 (2007).

    Article  Google Scholar 

  39. 39

    Etiope, G., Fridriksson, T., Italiano, F., Winwarter, W. & Theloke, J. Natural emissions of methane from geothermal and volcanic sources in Europe. J. Volcan. Geoth. Res. 165, 76–86 (2007).

    Article  Google Scholar 

  40. 40

    Romanovsky, V. E. et al. in Proc. of the Ninth International Conference on Permafrost (eds Kane, D. L. & Hinkel, K. M.) 1511–1518 (Institute of Northern Engineering, 2008).

    Google Scholar 

  41. 41

    Romanovsky, V. E. et al. Thermal state of permafrost in Russia. Permafrost Periglac. Process 21, 136–155 (2010).

    Article  Google Scholar 

  42. 42

    Rowland, J. C., Travis, B. J. & Wilson, C. J. The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys. Res. Lett. 38, L17504 (2011).

    Article  Google Scholar 

  43. 43

    Arp, C. D. & Jones, B. M. Geography of Alaska Lake Districts: Identification, Description, and Analysis of Lake-Rich Regions of a Diverse and Dynamic State (US Dept Interior, USGS Scientific Investigations Report 40, 2009).

  44. 44

    European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook. EEA Technical Report (2009).

  45. 45

    Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melnikov, E. in International Permafrost Association Standing Committee on Data Information and Communication (comp.) 2003, Circumpolar Active-Layer Permafrost System, Version 2.0 (eds Parsons, M. & Zhang, T.) (National Snow and Ice Data Center/World Data Center for Glaciology, 1998).

    Google Scholar 

  46. 46

    Etiope, G., Baciu, C. L. & Schoell, M. Extreme methane deuterium, nitrogen, and helium enrichment in natural gas from the Homorod seep (Romania). Chem. Geol. 280, 89–96 (2011).

    Article  Google Scholar 

  47. 47

    Milkov, A. V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org. Geochem. 42, 184–207 (2011).

    Article  Google Scholar 

  48. 48

    Pavlis, T. L. & Bruhn, R. L. Application of LIDAR to resolving bedrock structure in areas of poor exposure: An example from the STEEP study area, southern Alaska. Geol. Soc. Am. Bull. 123, 206–217 (2011).

    Article  Google Scholar 

  49. 49

    Kampman, N. et al. Pulses of carbon dioxide emissions from intracrustal faults following climatic warming. Nature Geosci. 5, 352–358 (2012).

    Article  Google Scholar 

Download references


We thank researchers at the Alaska DGGS and the USGS for contributions to data sets;D. Whiteman, L. McFadden and A. Strohm for field assistance; L. Oxtoby, C. Langford and D. Fields for laboratory work. V. Romanovsky, F. S. Chapin III, T. Pavlis and G. Etiope provided valuable comments on the manuscript. This work was supported by DOE #DE-NT0005665, NASA Carbon Cycle Sciences, the NASA Astrobiology Institute’s Icy Worlds node, the NSF Division of Earth Sciences and the NSF Arctic Division.

Author information




K.M.W.A. wrote the paper. K.M.W.A. and P.A. designed the experiment, conducted the field work and performed the seep analyses. G.G. provided expertise on cryosphere processes. Isotopic analysis was conducted in the laboratory of J.C. All authors commented on the analysis, interpretation and presentation of the data, and were involved in the writing.

Corresponding author

Correspondence to Katey M. Walter Anthony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 577 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walter Anthony, K., Anthony, P., Grosse, G. et al. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geosci 5, 419–426 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing