Riverine source of Arctic Ocean mercury inferred from atmospheric observations

Abstract

Methylmercury is a potent neurotoxin that accumulates in aquatic food webs. Human activities, including industry and mining, have increased inorganic mercury inputs to terrestrial and aquatic ecosystems. Methylation of this mercury generates methylmercury, and is thus a public health concern. Marine methylmercury is a particular concern in the Arctic, where indigenous peoples rely heavily on marine-based diets. In the summer, atmospheric inorganic mercury concentrations peak in the Arctic, whereas they reach a minimum in the northern mid-latitudes. Here, we use a global three-dimensional ocean–atmosphere model to examine the cause of this Arctic summertime maximum. According to our simulations, circumpolar rivers deliver large quantities of mercury to the Arctic Ocean during summer; the subsequent evasion of this riverine mercury to the atmosphere can explain the summertime peak in atmospheric mercury levels. We infer that rivers are the dominant source of mercury to the Arctic Ocean on an annual basis. Our simulations suggest that Arctic Ocean mercury concentrations could be highly sensitive to climate-induced changes in river flow, and to increases in the mobility of mercury in soils, for example as a result of permafrost thaw and forest fires.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Seasonal variation of atmospheric Hg0.
Figure 2: Simulated seasonal variation of Hg0 concentrations in Arctic surface air.
Figure 3: Seasonal budget of mercury in the Arctic Ocean mixed layer (70°–90° N).
Figure 4: Mean seasonal variation of river discharge into the Arctic Ocean.
Figure 5: Budget of mercury in the high Arctic.

References

  1. 1

    Steffen, A., Schroeder, W., Macdonald, R., Poissant, L. & Konoplev, A. Mercury in the Arctic atmosphere: An analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). Sci. Total Environ. 342, 185–198 (2005).

    Article  Google Scholar 

  2. 2

    Berg, T., Aspmo, K. & Steinnes, E. Transport of Hg from Atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition. Geophys. Res. Lett. 35, L09802 (2008).

    Article  Google Scholar 

  3. 3

    Cole, A. S. & Steffen, A. Trends in long-term gaseous mercury observations in the Arctic and effects of temperature and other atmospheric conditions. Atmos. Chem. Phys. 10, 4661–4672 (2010).

    Article  Google Scholar 

  4. 4

    Selin, N. E. et al. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J. Geophys. Res. 112, D02308 (2007).

    Article  Google Scholar 

  5. 5

    Steffen, A. et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8, 1445–1482 (2008).

    Article  Google Scholar 

  6. 6

    Ariya, P. A. et al. The Arctic: A sink for mercury. Tellus B 56, 397–403 (2004).

    Article  Google Scholar 

  7. 7

    Lindberg, S. E. et al. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Tech. 36, 1245–1256 (2002).

    Article  Google Scholar 

  8. 8

    Hirdman, D. et al. Transport of mercury in the Arctic atmosphere: Evidence for a spring- time net sink and summer-time source. Geophys. Res. Lett. 36, L12814 (2009).

    Article  Google Scholar 

  9. 9

    Kirk, J. L., St. Louis, V. L. & Sharp, M. J. Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environ. Sci. Tech. 40, 7590–7596 (2006).

    Article  Google Scholar 

  10. 10

    Aspmo, K. et al. Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer. Environ. Sci. Tech. 40, 4083–4089 (2006).

    Article  Google Scholar 

  11. 11

    Sommar, J., Andersson, M. E. & Jacobi, H-W. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean. Atmos. Chem. Phys. 10, 5031–5045 (2010).

    Article  Google Scholar 

  12. 12

    Andersson, M., Sommar, J., Gårdfeldt, K. & Lindqvist, O. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 110, 190–194 (2008).

    Article  Google Scholar 

  13. 13

    Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 12037–12057 (2010).

    Article  Google Scholar 

  14. 14

    Soerensen, A. L. et al. An improved global model for air–sea exchange of mercury: High concentrations over the North Atlantic. Environ. Sci. Tech. 44, 8574–8580 (2010).

    Article  Google Scholar 

  15. 15

    Bullock, O. R. Jr et al. The North American Mercury Model Intercomparison Study (NAMMIS): Study description and model-to-model comparisons. J. Geophys. Res. 113, D17310 (2008).

    Article  Google Scholar 

  16. 16

    Task Force on Hemispheric Transport of Air Pollution. Hemispheric Transport of Air Pollution 2010 Part B: Mercury. (Economic Commission for Europe, 2010).

  17. 17

    Steen, A. et al. Natural and anthropogenic atmospheric mercury in the European Arctic: A fractionation study. Atmos. Chem. Phys. 11, 6273–6284 (2011).

    Article  Google Scholar 

  18. 18

    Durnford, D. & Dastoor, A. The behavior of mercury in the cryosphere:A review of what we know from observations. J. Geophys. Res. 116, D06305 (2011).

    Article  Google Scholar 

  19. 19

    Poulain, A. J. et al. Redox transformations of mercury in an Arctic snowpack at springtime. Atmos. Environ. 38, 6763–6774 (2004).

    Article  Google Scholar 

  20. 20

    De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

    Article  Google Scholar 

  21. 21

    Toole, J. M. et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res. 115, C10018 (2010).

    Article  Google Scholar 

  22. 22

    Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cy. 21, GB4022 (2007).

    Article  Google Scholar 

  23. 23

    Kirk, J. L. et al. Methylated mercury species in marine waters of the Canadian high and sub Arctic. Environ. Sci. Tech. 42, 8367–8373 (2008).

    Article  Google Scholar 

  24. 24

    Poulain, A. J. et al. Potential for mercury reduction by microbes in the high arctic. Appl. Environ. Microb. 73, 2230–2238 (2007).

    Article  Google Scholar 

  25. 25

    Amyot, M., Gill, G. A. & Morel, F. M. M. Production and loss of dissolved gaseous mercury in coastal seawater. Environ. Sci. Tech. 31, 3606–3611 (1997).

    Article  Google Scholar 

  26. 26

    Vörösmarty, C. J., Fekete, B. M., Meybeck, M. & Lammers, R. B. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cy. 14, 599–621 (2000).

    Article  Google Scholar 

  27. 27

    Dittmar, T. & Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Mar. Chem. 83, 103–120 (2003).

    Article  Google Scholar 

  28. 28

    Grigal, D. Mercury sequestration in forests and peatlands: A review. J. Environ. Qual. 32, 393–405 (2003).

    Article  Google Scholar 

  29. 29

    Leitch, D. R. et al. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 373, 178–195 (2007).

    Article  Google Scholar 

  30. 30

    Coquery, M., Cossa, D. & Martin, J. The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent Arctic coastal waters. Wat. Air Soil Pollut. 80, 653–664 (1995).

    Article  Google Scholar 

  31. 31

    Outridge, P., Macdonald, R., Wang, F., Stern, G. & Dastoor, A. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).

    Article  Google Scholar 

  32. 32

    Shiklomanov, A. I. & Lammers, R. B. Record Russian river discharge in 2007 and the limits of analysis. Environ. Res. Lett. 4, 045015 (2009).

    Article  Google Scholar 

  33. 33

    Schuster, P. F. et al. Mercury export from the Yukon River basin and potential response to a changing climate. Environ. Sci. Tech. 45, 9262–9267 (2011).

    Article  Google Scholar 

  34. 34

    Walling, D. & Webb, B. Estimating the discharge of contaminants to coastal waters by rivers: Some cautionary comments. Mar. Pollut. Bull. 16, 488–492 (1985).

    Article  Google Scholar 

  35. 35

    Lantuit, H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95, 84–102 (2008).

    Article  Google Scholar 

  36. 36

    Atkinson, D. E. Observed storminess patterns and trends in the circum-Arctic coastal regime. Geo.-Mar. Lett. 25, 98–109 (2005).

    Article  Google Scholar 

  37. 37

    Leitch, D. R. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation Master of Science thesis, Univ. Manitoba (2006).

  38. 38

    Rachold, V. et al. in The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R.) Ch. 2, 33–55 (Springer, 2004).

    Google Scholar 

  39. 39

    Graydon, J. A., Emmerton, C. A., Lesack, L. F. W. & Kelly, E. N. Mercury in the Mackenzie River delta and estuary: Concentrations and fluxes during open-water conditions. Sci. Total Environ. 407, 2980–2988 (2009).

    Article  Google Scholar 

  40. 40

    Rydberg, J., Klaminder, J., Rosén, P. & Bindler, R. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Sci. Total Environ. 408, 4778–4783 (2010).

    Article  Google Scholar 

  41. 41

    Turetsky, M. R. et al. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 33, L16403 (2006).

    Article  Google Scholar 

  42. 42

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  43. 43

    Amos, H. A. et al. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos. Chem. Phys. 12, 591–603 (2012).

    Article  Google Scholar 

  44. 44

    Pöhler, D., Vogel, L., Frieß, U. & Platt, U. Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy. Proc. Natl Acad. Sci. USA 107, 6582–6587 (2010).

    Article  Google Scholar 

  45. 45

    Prados-Roman, C. et al. Airborne DOAS limb measurements of tropospheric trace gas profiles: Case studies on the profile retrieval of O4 and BrO. Atmos. Meas. Tech. 4, 1241–1260 (2011).

    Article  Google Scholar 

  46. 46

    Dommergue, A. et al. The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 30, 1621 (2003).

    Article  Google Scholar 

  47. 47

    Weiss-Penzias, P., Jaffe, D. A., McClintick, A., Prestbo, E. M. & Landis, M. S. Gaseous elemental mercury in the marine boundary layer: Evidence for rapid removal in anthropogenic pollution. Environ. Sci. Tech. 37, 3755–3763 (2003).

    Article  Google Scholar 

  48. 48

    Sigler, J. M., Mao, H. & Talbot, R. Gaseous elemental and reactive mercury in Southern New Hampshire. Atmos. Chem. Phys. 9, 1929–1942 (2009).

    Article  Google Scholar 

  49. 49

    Yatavelli, R. L. N. et al. Mercury, PM2.5 and gaseous co-pollutants in the Ohio River Valley region: Preliminary results from the Athens supersite. Atmos. Environ. 40, 6650–6665 (2006).

    Article  Google Scholar 

  50. 50

    Fekete, B. M., Vörösmarty, C. J. & Grabs, W. Global, composite runoff fields based on observed river discharge and simulated water balances. (Univ. New Hampshire and Global Runoff Data Centre, 2000).

Download references

Acknowledgements

This work was financially supported by the Arctic System Science Program of the US National Science Foundation. Financial support for the Alert and Amderma data sets was provided by the Northern Contaminants Program, Environment Canada and the Arctic Monitoring and Assessment Programme. We thank A. Cole for providing the Alert data; A. Konoplev and F. Pankratov at SPA Typhoon in Obninsk, Russia for providing the Amderma data; K. A. Pfaffhuber, T. Berg and the Chemical Co-ordinating Centre of EMEP for providing the Zeppelin data; and E. Corbitt and C. Holmes for helpful conversations.

Author information

Affiliations

Authors

Contributions

J.A.F. designed, performed and interpreted the model simulations. D.J.J. and E.M.S. supervised the research and contributed significantly to interpretation of the results. A.L.S. and H.M.A. developed major components of the model. A.S. collected the Alert data. J.A.F. wrote the paper, and all authors edited and revised the paper.

Corresponding author

Correspondence to Jenny A. Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 596 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fisher, J., Jacob, D., Soerensen, A. et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nature Geosci 5, 499–504 (2012). https://doi.org/10.1038/ngeo1478

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing