Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The proto-Earth as a significant source of lunar material


A giant impact between the proto-Earth and a Mars-sized impactor named Theia is the favoured scenario for the formation of the Moon1,2,3. Oxygen isotopic compositions have been found to be identical between terrestrial and lunar samples4, which is inconsistent with numerical models estimating that more than 40% of the Moon-forming disk material was derived from Theia2,3. However, it remains uncertain whether more refractory elements, such as titanium, show the same degree of isotope homogeneity as oxygen in the Earth–Moon system. Here we present 50Ti/47Ti ratios in lunar samples measured by mass spectrometry. After correcting for secondary effects associated with cosmic-ray exposure at the lunar surface using samarium and gadolinium isotope systematics, we find that the 50Ti/47Ti ratio of the Moon is identical to that of the Earth within about four parts per million, which is only 1/150 of the isotopic range documented in meteorites. The isotopic homogeneity of this highly refractory element suggests that lunar material was derived from the proto-Earth mantle, an origin that could be explained by efficient impact ejection, by an exchange of material between the Earth’s magma ocean and the protolunar disk, or by fission from a rapidly rotating post-impact Earth.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Titanium nucleosynthetic heterogeneity, ɛ50Ti=[(50Ti/47Ti)sample/(50Ti/47Ti)rutile−1]×104, for carbonaceous, enstatite, ordinary chondrites, and achondrites.
Figure 2: Correction of cosmogenic Ti isotope effects in lunar samples.


  1. Cameron, A. G. W. From interstellar gas to the Earth–Moon system. Meteorit. Planet. Sci. 36, 9–22 (2001).

    Article  Google Scholar 

  2. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  3. Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. Obtaining higher traget material proportions in the giant impact by changing impact parameters and impactor compositions Lunar Planet. Sci. Conf. 42nd abstr. 1136 (2011).

  4. Wiechert, U. et al. Oxygen isotopes and the moon-forming giant impact. Science 294, 345–348 (2001).

    Article  Google Scholar 

  5. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    Article  Google Scholar 

  6. Dauphas, N., Marty, B. & Reisberg, L. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. 565, 640–644 (2002).

    Article  Google Scholar 

  7. Trinquier, A., Birck, J. L. & Allègre, C. J. Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655, 1179–1185 (2007).

    Article  Google Scholar 

  8. Trinquier, A. et al. Origin of nucleosynthetic isotope heteorogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009).

    Article  Google Scholar 

  9. Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U. & Halliday, A. N. Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet. Sci. Lett. 266, 233–244 (2008).

    Article  Google Scholar 

  10. Zhang, J., Dauphas, N., Davis, A. M. & Pourmand, A. A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites. J. Anal. At. Spectrom. 26, 2197–2205 (2011).

    Article  Google Scholar 

  11. Niemeyer, S. & Lugmair, G. W. Titanium isotope anomalies in meteorites. Geochim. Cosmochim. Acta 48, 1401–1416 (1984).

    Article  Google Scholar 

  12. Niederer, F. R., Papanastassiou, D. A. & Wasserburg, G. J. Absolute isotopic abundances of Ti in meteorites. Geochim. Cosmochim. Acta 49, 835–851 (1985).

    Article  Google Scholar 

  13. Lugmair, G. W., Scheinin, N. B. & Marti, K. Sm–Nd age and history of Apollo 17 basalt 75075—Evidence for early differentiation of the lunar exterior. Lunar Planet. Sci. Conf. 6th 1419–1429 (1975).

  14. Hidaka, H., Ebihara, M. & Yoneda, S. Neutron capture effects on samarium, europium, and gadolinium in Apollo 15 deep drill-core samples. Meteorit. Planet. Sci. 35, 581–589 (2000).

    Article  Google Scholar 

  15. Sands, D. G., De Laeter, J. R. & Rosman, K. J. R. Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum. Earth Planet. Sci. Lett. 186, 335–346 (2001).

    Article  Google Scholar 

  16. Russ, G. P. III Neutron stratigraphy in the lunar regolith. Ph.D. Thesis, California Institute of Technology, (1974).

  17. Nyquist, L. E. et al. 146Sm-142Nd formation interval for the luanr mantle. Geochim. Cosmochim. Acta 59, 2817–2837 (1995).

    Article  Google Scholar 

  18. Curtis, D. & Wasserburg, G. J. Transport and erosional processes in the Taurus–Littrow Valley—Inferences from neutron fluences in surface soils. Lunar Planet. Sci. Conf. 8th 3045–3057 (1977).

  19. Hidaka, H., Yoneda, S. & Marti, K. Regolith history of the aubritic meteorite parent body revealed by neutron capture effects on Sm and Gd isotopes. Geochim. Cosmochim. Acta 70, 3449–3456 (2006).

    Article  Google Scholar 

  20. Hidaka, H., Ebihara, M. & Yoneda, S. High fluences of neutrons determined from Sm and Gd isotopic compositions in aubrites. Earth Planet. Sci. Lett. 173, 41–51 (1999).

    Article  Google Scholar 

  21. Chambers, J. E. & Wetherill, G. W. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998).

    Article  Google Scholar 

  22. Dauphas, N. & Pourmand, A. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    Article  Google Scholar 

  23. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  Google Scholar 

  24. Walsh, K. J. et al. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  Google Scholar 

  25. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007).

    Article  Google Scholar 

  26. König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).

    Article  Google Scholar 

  27. Takeda, T. & Shigeru, I. Angular momentum transfer in a protolunar disk. Astrophys. J. 560, 514–533 (2001).

    Article  Google Scholar 

  28. Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).

    Article  Google Scholar 

  29. Melosh, H. J. An isotopic crisis for the giant impact origin of the Moon? Meteorit. Planet. Sci. 44, A139 (2009).

    Google Scholar 

  30. Ćuk, M. & Stewart, S. T. Early Solar System Impact Bombardment II (Lunar and Planetary Institute, #4006, 2012).

    Google Scholar 

Download references


We thank National Aeronautics and Space Administration (NASA), R. N. Clayton and G. E. Lofgren for supplying the Apollo lunar samples; the Field Museum, United States National Museum, Muséum National d’Histoire Naturelle and Chicago Center for Cosmochemistry for providing bulk meteorites; K Pahlevan for his comments on an earlier version of the text, and P. R. Craddock, T. J. Ireland, A. Pourmand, H. Tang and A. Liu for their help with the experiments. This work was supported by NASA, through grants NNX09AG59G (to N.D.), NNX09AG39G (to A.M.D.) and NNX08AE06G (to L. Grossman in support of A.F.); National Science Foundation, through grant EAR-0820807 (to N.D.); a Packard Fellowship (to N.D.); and the Swiss National Science Foundation (to I.L.).

Author information

Authors and Affiliations



J.Z., N.D. and A.M.D. planned the project, J.Z. measured the Ti isotopic compositions of all samples, I.L. provided model predictions of cosmogenic effects. A.F., J.Z., N.D. and A.M.D. calculated the timescale for evaporative exchange. All authors contributed to discussion, interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Junjun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 729 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Dauphas, N., Davis, A. et al. The proto-Earth as a significant source of lunar material. Nature Geosci 5, 251–255 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing