Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geophysical constraints on the dynamics of spreading centres from rifting episodes on land

Abstract

Most of the Earth's crust is created along 60,000 km of mid-ocean ridge system. Here, tectonic plates spread apart and, in doing so, gradually build up stress. This stress is released during rifting episodes, when bursts of magmatic activity lead to the injection of vertical sheets of magma — termed dykes — into the crust. Only 2% of the global mid-ocean ridge system is above sea level, so making direct observations of the rifting process is difficult. However, geodetic and seismic observations exist from spreading centres in Afar (East Africa) and Iceland that are exposed at the land surface. Rifting episodes are rare, but the few that have been well observed at these sites have operated with remarkably similar mechanisms. Specifically, magma is supplied to the crust in an intermittent manner, and is stored at multiple positions and depths. It then laterally intrudes in dykes within the brittle upper crust. Depending on the availability of magma, multiple magma centres can interact during one rifting episode. If we are to forecast large eruptions at spreading centres, rifting-cycle models will need to fully incorporate realistic crust and mantle properties, as well as the dynamic transport of magma.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Location of subaerial spreading centres.
Figure 2: Summary of Dabbahu and Krafla rifting episodes.
Figure 3: Temporal history of dyke intrusions.
Figure 4: Deformation at Dabbahu following the initial dyke intrusion.
Figure 5: Inter-rifting deformation and seismicity at Askja, Iceland.
Figure 6: Conceptual model for slow-spreading ridges based on observations at subaerial spreading centres.

References

  1. Toomey, D. R., Jousselin, D., Dunn, R. A., Wilcock, W. S. D. & Detrick, R. S. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446, 409–414 (2007).

    Google Scholar 

  2. Dunn, R. A. & Toomey, D. R. Seismological evidence for three-dimensional melt migration beneath the east Pacific rise. Nature 388, 259–262 (1997).

    Google Scholar 

  3. Singh, S. C. et al. Discovery of a magma chamber and faults beneath a mid-Atlantic Ridge hydrothermal field. Nature 442, 1029–1032 (2006).

    Google Scholar 

  4. Smith, D. K. & Cann, J. R. Constructing the upper crust of the mid-Atlantic Ridge: a reinterpretation based on the Puna Ridge, Kilauea Volcano. J. Geophys. Res.-Sol. Earth 104, 25379–25399 (1999).

    Google Scholar 

  5. Canales, J. P., Nedimovic, M. R., Kent, G. M., Carbotte, S. M. & Detrick, R. S. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature 460, 89–93 (2009).

    Google Scholar 

  6. Dzurisin, D. Volcano Deformation (Springer Praxis, 2006).

    Google Scholar 

  7. Poland, M., Hamburger, M. & Newman, A. The changing shapes of active volcanoes: history, evolution, and future challenges for volcano geodesy. J. Volcanol. Geoth. Res. 150, 1–13 (2006).

    Google Scholar 

  8. Chouet, B. Volcano seismology. Pure Appl. Geophys. 160, 739–788 (2003).

    Article  Google Scholar 

  9. McNutt, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci. 33, 461–491 (2005).

    Google Scholar 

  10. Perfit, M. R. & Chadwick, W. W. Jr in Faulting and Magmatism at Mid-ocean Ridges (ed. Buck, R. W et al.) 106, 59–116 (Geophysical Monograph Series, 1998).

    Google Scholar 

  11. Nooner, S. L. & Chadwick, W. W. Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions. Geochem. Geophys. Geosys. 10, Q02002 (2009).

    Google Scholar 

  12. Tolstoy, M. et al. A sea-floor spreading event captured by seismometers. Science 314, 1920–1922 (2006).

    Google Scholar 

  13. Delaney, J. R. et al. The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges. Science 281, 222–230 (1998).

    Google Scholar 

  14. Sinton, J. et al. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17°–19° S. J. Geophys. Res.-Sol. Earth 107, 2115 (2002).

    Google Scholar 

  15. Demets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990).

    Google Scholar 

  16. Sigmundsson, F. Iceland Geodynamics: Crustal Deformation and Divergent Plate Tectonics (Springer, 2006).

    Google Scholar 

  17. Bastow, I. D. & Keir, D. The protracted development of the continent-ocean transition in Afar. Nature Geosci. 4, 248–250 (2011).

    Google Scholar 

  18. Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R. & Kelley, S. P. Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol. Soc. Am. Bull. 117, 846–864 (2005).

    Google Scholar 

  19. ArRajehi, A. et al. Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics 29, Tc3011 (2010).

    Google Scholar 

  20. McClusky, S. et al. Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics. Geophys. Res. Lett. 37, L05301 (2010).

    Google Scholar 

  21. Hill, R. I., Campbell, I. H., Davies, G. F. & Griffiths, R. W. Mantle plumes and continental tectonics. Science 256, 186–193 (1992).

    Google Scholar 

  22. Darbyshire, F. A., White, R. S. & Priestley, K. F. Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth Planet. Sci. Let. 181, 409–428 (2000).

    Google Scholar 

  23. Furman, T. et al. Heads and tails: 30 million years of the Afar plume. Geol. Soc. London Spec. Publ. 259, 97–121 (2006).

    Google Scholar 

  24. Poore, H., White, N. & Maclennan, J. Ocean circulation and mantle melting controlled by radial flow of hot pulses in the Iceland plume. Nature Geosci. 4, 558–561 (2011).

    Google Scholar 

  25. Hammond, J. et al. The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochem. Geophys. Geosys. 12, Q12004 (2011).

    Google Scholar 

  26. Hayward, N. J. & Ebinger, C. J. Variations in the along-axis segmentation of the Afar Rift system. Tectonics 15, 244–257 (1996).

    Google Scholar 

  27. Tucholke, B. E. & Lin, J. A geological model for the structure of ridge segments in slow-spreading ocean crust. J. Geophys. Res.-Sol. Earth 99, 11937–11958 (1994).

    Google Scholar 

  28. Bjornsson, A., Saemundsson, K., Einarsson, P., Tryggvason, E. & Gronvold, K. Current rifting episode in north Iceland. Nature 266, 318–323 (1977).

    Google Scholar 

  29. Einarsson, P. The volcanic unrest at Krafla 1975–1989. Náttúra Mývatn 96–139 (Hið íslenska náttúrufræðifélag, 1991).

    Google Scholar 

  30. Brandsdottir, B. & Einarsson, P. Seismic activity associated with the September 1977 deflation of the Krafla central volcano in northeastern Iceland. J. Volcanol. Geotherm. Res. 6, 197–212 (1979).

    Google Scholar 

  31. Einarsson, P. & Brandsdottir, B. Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla Volcano in NE Iceland. J. Geophys.-Z. Geophys. 47, 160–165 (1980).

    Google Scholar 

  32. Opheim, J. A. & Gudmundsson, A. Formation and geometry of fractures, and related volcanism, of the Krafla fissure swarm, northeast Iceland. Geol. Soc. Am. Bull. 101, 1608–1622 (1989).

    Google Scholar 

  33. Tryggvason, E. Widening of the Krafla fissure swarm during the 1975–1981 volcano-tectonic episode. Bull. Volcanol. 47, 47–69 (1984).

    Google Scholar 

  34. Bjornsson, A. Dynamics of crustal rifting in NE Iceland. J. Geophys. Res.-Solid 90, 151–162 (1985).

    Google Scholar 

  35. Bjornsson, A., Johnsen, G., Sigurdsson, S., Thorbergsson, G. & Tryggvason, E. Rifting of the plate boundary in north Iceland 1975–1978 J. Geophys. Res. 84, 3029–3038 (1979).

    Google Scholar 

  36. Brandsdottir, B., Menke, W., Einarsson, P., White, R. S. & Staples, R. K. Faroe-Iceland ridge experiment 2: crustal structure of the Krafla central volcano. J. Geophys. Res.-Sol. Earth 102, 7867–7886 (1997).

    Google Scholar 

  37. Einarsson, P. S-wave shadows in the Krafla caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull. Volcanol. 41, 187–195 (1978).

    Google Scholar 

  38. Brandsdóttir, B. & Menke, W. H. Thin low-velocity zone within the Krafla caldera, NE-Iceland attributed to a small magma chamber. Geophys. Res. Lett. 19, 2381–2384 (1992).

    Google Scholar 

  39. Buck, W. R., Einarsson, P. & Brandsdottir, B. Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res.-Sol. Earth 111, B12404 (2006).

    Google Scholar 

  40. Gronvold, K. in Eos Trans. AGU Fall Meet. Suppl. 87(52), abstr. T33E-08 (2006).

    Google Scholar 

  41. Tryggvason, E. Multiple magma reservoirs in a rift-zone volcano — ground deformation and magma transport during the September 1984 eruption of Krafla, Iceland. J. Volcanol. Geother. Res. 28, 1–44 (1986).

    Google Scholar 

  42. Arnadottir, T., Sigmundsson, F. & Delaney, P. T. Sources of crustal deformation associated with the Krafla, Iceland, eruption of September 1984. Geophys. Res. Lett. 25, 1043–1046 (1998).

    Google Scholar 

  43. Gudmundsson, A. Infrastructure and mechanics of volcanic systems in Iceland. J. Volcanol. Geother. Res. 64, 1–22 (1995).

    Google Scholar 

  44. Abdallah, A. et al. Relevance of Afar seismicity and volcanism to the mechanics of accreting plate boundaries. Nature 282, 17–23 (1979).

    Google Scholar 

  45. Ruegg, J. Structure profonde de la croute et du manteau superieur du Sud-Est de l'Afar d'apres les données sismiques. Ann. Geophys. 31, 329–360 (1975).

    Google Scholar 

  46. Allard, P., Tazieff, H. & Dajlevic, D. Observations of seafloor spreading in Afar during the November 1978 fissure eruption. Nature 279, 30–33 (1979).

    Google Scholar 

  47. Ruegg, J. C., Lepine, J. C., Tarantola, A. & Kasser, M. Geodetic measurements of rifting associated with a seismo-volcanic crisis in Afar. Geophys. Res. Lett. 6, 817–820 (1979).

    Google Scholar 

  48. Tarantola, A., Ruegg, J. C. & Lepine, J. P. Geodetic evidence for rifting in Afar 2: vertical displacements. Earth Planet. Sci. Lett. 48, 363–370 (1980).

    Google Scholar 

  49. Stein, R. S., Briole, P., Ruegg, J. C., Tapponnier, P. & Gasse, F. Contemporary, Holocene, and Quaternary deformation of the Asal rift, Djibouti — implications for the mechanics of slow spreading ridges. J. Geophys. Res.-Sol. Earth 96, 21789–21806 (1991).

    Google Scholar 

  50. Rubin, A. M. & Pollard, D. D. Dike-induced faulting in rift zones of Iceland and Afar. Geology 16, 413–417 (1988).

    Google Scholar 

  51. Wright, T. J. et al. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–294 (2006).

    Google Scholar 

  52. Ayele, A. et al. The volcano-seismic crisis in Afar, Ethiopia, starting September 2005. Earth Planet. Sci. Lett. 255, 177–187 (2007).

    Google Scholar 

  53. Barisin, I., Leprince, S., Parsons, B. & Wright, T. Surface displacements in the September 2005 Afar rifting event from satellite image matching: asymmetric uplift and faulting. Geophy. Res. Lett. 36, L07301 (2009).

    Google Scholar 

  54. Grandin, R. et al. September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): constraints provided by geodetic data. J. Geophys. Res.-Sol. Earth 114, B08404 (2009).

    Google Scholar 

  55. Rowland, J. et al. Fault growth at a nascent slow-spreading ridge: 2005 Dabbahu rifting episode, Afar. Geophys. J. Int. 171, 1226–1246 (2007).

    Google Scholar 

  56. Ayele, A. et al. September 2005 mega-dike emplacement in the Manda-Harraro nascent oceanic rift (Afar depression). Geophys. Res. Lett. 36, L20306 (2009).

    Google Scholar 

  57. Ebinger, C. et al. Length and timescales of rift faulting and magma intrusion: the Afar rifting cycle from 2005 to present. Ann. Rev. Earth Planet. Sci. 38, 439–466 (2010).

    Google Scholar 

  58. Rowland, J. et al. Fault growth at a nascent slow spreading ridge: 2005 Dabbahu rifting episode, Afar. Geophys. J. Int. 171, 1226–1246 (2007).

    Google Scholar 

  59. Hamling, I. et al. Geodetic observations of the ongoing Dabbahu rifting episode: new dyke intrusions in 2006 and 2007. Geophys. J. Int. 178, 989–1003 (2009).

    Google Scholar 

  60. Grandin, R. et al. Sequence of rifting in Afar, Manda-Hararo rift, Ethiopia, 2005–2009: Time-space evolution and interactions between dikes from interferometric synthetic aperture radar and static stress change modeling. J. Geophys. Res.-Sol. Earth 115, B10413 (2010).

    Google Scholar 

  61. Ferguson, D. J. et al. Recent rift-related volcanism in Afar, Ethiopia. Earth Planet. Sci. Lett. 292, 409–418 (2010).

    Google Scholar 

  62. Belachew, M. et al. Comparison of dike intrusions in an incipient seafloor-spreading segment in Afar, Ethiopia: seismicity perspectives. J. Geophys. Res.-Sol. Earth 116, B06405 (2011).

    Google Scholar 

  63. Grandin, R. et al. Seismicity during lateral dike propagation: insights from new data in the recent Manda Hararo-Dabbahu rifting episode (Afar, Ethiopia). Geochem. Geophys. Geosys. 12, Q0AB08 (2011).

    Google Scholar 

  64. Keir, D. et al. Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea rift in Afar. Geology 37, 59–62 (2009).

    Google Scholar 

  65. Hamling, I. J., Wright, T. J., Calais, E., Bennati, L. & Lewi, E. Stress transfer between thirteen successive dyke intrusions in Ethiopia. Nature Geosci. 3, 806–806 (2010).

    Google Scholar 

  66. Burgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Ann. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Google Scholar 

  67. Foulger, G. R. et al. Post-rifting stress-relaxation at the divergent plate boundary in northeast Iceland. Nature 358, 488–490 (1992).

    Google Scholar 

  68. Arnadottir, T. et al. Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland. Geophys. J. Int. 177, 691–716 (2009).

    Google Scholar 

  69. Heki, K., Foulger, G. R., Julian, B. R. & Jahn, C. H. Plate dynamics near divergent boundaries - geophysical implications of crustal deformation in NE Iceland. J. Geophys. Res.-Sol. Earth 98, 14279–14297 (1993).

    Google Scholar 

  70. Hofton, M. A. & Foulger, G. R. Postrifting anelastic deformation around the spreading plate boundary, north Iceland 1: modeling of the 1987–1992 deformation field using a viscoelastic Earth structure. J. Geophys. Res.-Sol. Earth 101, 25403–25421 (1996).

    Google Scholar 

  71. Pollitz, F. F. & Sacks, I. S. Viscosity structure beneath northeast Iceland. J. Geophys. Res.-Sol. Earth 101, 17771–17793 (1996).

    Google Scholar 

  72. De Zeeuw-van Dalfsen, E., Pedersen, R., Sigmundsson, F. & Pagli, C. Satellite radar interferometry 1993–1999 suggests deep accumulation of magma near the crust-mantle boundary at the Krafla volcanic system, Iceland. Geophys. Res. Lett. 31, L13611 (2004).

    Google Scholar 

  73. Cattin, R. et al. Numerical modelling of Quaternary deformation and post-rifting displacement in the Asal-Ghoubbet rift (Djibouti, Africa). Earth Planet. Sci. Lett. 239, 352–367 (2005).

    Google Scholar 

  74. Ruegg, J. C. & Kasser, M. Deformation across the Asal-Ghoubbet Rift, Djibouti, uplift and crustal extension 1979–1986 Geophys. Res. Lett. 14, 745–748 (1987).

    Google Scholar 

  75. Vigny, C. et al. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa. J. Geophys. Res.-Sol. Earth 112, B06410 (2007).

    Google Scholar 

  76. Ebinger, C. et al. Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift. Geophys. J. Int. 174, 1138–1152 (2008).

    Google Scholar 

  77. Nooner, S. et al. Post-rifting relaxation in the Afar region, Ethiopia. Geophys. Res. Lett. 36, L21308 (2009).

    Google Scholar 

  78. Grandin, R. et al. Transient rift opening in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia) imaged by time-dependent elastic inversion of interferometric synthetic aperture radar data. J. Geophys. Res.-Sol. Earth 115, B11499 (2010).

    Google Scholar 

  79. Hamling, I. J. Measuring and modelling deformation during the Dabbahu (Afar) rifting episode. PhD Thesis, Univ. Leeds (2010).

    Google Scholar 

  80. Morgan, J. P., Parmentier, E. M. & Lin, J. Mechanisms for the origin of midocean ridge axial topography — implications for the thermal and mechanical structure of accreting plate boundaries. J. Geophys. Res.-Solid 92, 12823–12836 (1987).

    Google Scholar 

  81. Sigurdsson, H. & Sparks, R. S. J. Rifting episode in north Iceland in 1874–1875 and the eruptions of Askja and Sveinagja. Bull. Volcanol. 41, 149–167 (1978).

    Google Scholar 

  82. Pagli, C., Sigmundsson, F., Arnadottir, T., Einarsson, P. & Sturkell, E. Deflation of the Askja volcanic system: constraints on the deformation source from combined inversion of satellite radar interferograms and GPS measurements. J. Volcanol. Geotherm. Res. 152, 97–108 (2006).

    Google Scholar 

  83. Pedersen, R., Sigmundsson, F. & Masterlark, T. Rheologic controls on inter-rifting deformation of the Northern Volcanic Zone, Iceland. Earth Planet. Sci. Lett. 281, 14–26 (2009).

    Google Scholar 

  84. Sturkell, E. et al. Volcano, geodesy and magma dynamics in Iceland. J. Volcanol. Geotherm. Res. 150, 14–34 (2006).

    Google Scholar 

  85. De Zeeuw-van Dalfsen, E., Pedersen, R., Hooper, A. & Sigmundsson, F. Subsidence of Askja caldera 2000–2009: modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. J. Volcanol. Geotherm. Res. 213–214, 72–82 (2012).

    Google Scholar 

  86. Sturkell, E., Sigmundsson, F. & Slunga, R. 1983–2003 decaying rate of deflation at Askja caldera: pressure decrease in an extensive magma plumbing system at a spreading plate boundary. Bull. Volcanol. 68, 727–735 (2006).

    Google Scholar 

  87. Soosalu, H. et al. Lower-crustal earthquakes caused by magma movement beneath Askja volcano on the north Iceland rift. Bull. Volcanol. 72, 55–62 (2010).

    Google Scholar 

  88. Key, J., White, R. S., Soosalu, H. & Jakobsdottir, S. S. Multiple melt injection along a spreading segment at Askja, Iceland. Geophys. Res. Lett. 38, L05301 (2011).

    Google Scholar 

  89. De Zeeuw-Van Dalfsen, E., Rymer, H., Sigmundsson, F. & Sturkell, E. Net gravity decrease at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003. J. Volcanol. Geotherm. Res. 139, 227–239 (2005).

    Google Scholar 

  90. Langmuir, C. H., Bender, J. F. & Batiza, R. Petrological and tectonic segmentation of the East Pacific Rise, 5 30 −14 30 N. Nature 322, 422–429 (1986).

    Google Scholar 

  91. MacLennan, J. Concurrent mixing and cooling of melts under Iceland. J. Petrol. 49, 1931–1953 (2008).

    Google Scholar 

  92. Qin, R. & Buck, W. R. Why meter-wide dikes at oceanic spreading centers? Earth and Planetary Science Letters 265, 466–474 (2008).

    Google Scholar 

  93. Field, L., Blundy, J., Brooker, R. A., Wright, T. J. & Yirgu, G. Magma storage conditions beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy. Bull. Volcanol. http://dx.doi.org/10.1007/s00445-012-0580-6 (2012).

  94. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ., 2002).

    Google Scholar 

  95. Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res.-Sol. Earth 101, 21815–21828 (1996).

    Google Scholar 

  96. Pagli, C. et al. Glacio-isostatic deformation around the Vatnajokull ice cap, Iceland, induced by recent climate warming: GPS observations and finite element modeling. J. Geophys. Res.-Sol. Earth 112, B08405 (2007).

    Google Scholar 

  97. Pagli, C. et al. Dynamics of an axial magma chamber at the Erta Ale slow spreading segment. Nature Geosci. 5, 284–288 (2012).

    Google Scholar 

  98. Oppenheimer, C. & Francis, P. Implications of longeval lava lakes for geomorphological and plutonic processes at Erta'Ale volcano, Afar. J. Volcanol. Geothermal Research 80, 101–111 (1998).

    Google Scholar 

  99. Morgan, J. P. & Ghen, Y. J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

    Google Scholar 

  100. Sæmundsson, K. Geology of the Krafla volcanic system. Náttúra Mývatns 26–95 (Hið íslenska náttúrufræðifélag, 1991).

    Google Scholar 

  101. Thordarson, T. & Self, S. The Laki (Skaftar-Fires) and Grimsvotn eruptions in 1783–1785 Bull. Volcanol. 55, 233–263 (1993).

    Google Scholar 

  102. Keir, D. et al. Lower crustal earthquakes near the Ethiopian rift induced by magmatic processes. Geochem. Geophys. Geosys. 10, Q0ab02 (2009).

    Google Scholar 

  103. Doubre, C. et al. Crustal structure and magmato-tectonic processes in an active rift (Asal-Ghoubbet, Afar, East Africa): 2. Insights from the 23-year recording of seismicity since the last rifting event. J. Geophys. Res.-Sol. Earth 112, B05406 (2007).

    Google Scholar 

Download references

Acknowledgements

Our work is supported by NERC grants NE/D008611/1, NE/D01039X/1 and NE/E007414/1, NSF grants EAR-0635789 and EAR-0613651, a NERC-COMET+ studentship to I.J.H., and a Royal Society University Research Fellowship to T.J.W. Authors in Iceland were supported by the Icelandic Research Fund (through Volcano Anatomy project) and the University of Iceland Research Fund. We are grateful to Janet Key and Bob White for providing seismicity data for Askja, and to the numerous scientists involved in the countless field experiments in Afar and Iceland that have collected the data sets described here. The manuscript was improved by thoughtful comments from Bob White and Falk Amelung. The Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+) is part of the UK National Environment Research Council's National Centre for Earth Observation.

Author information

Authors and Affiliations

Authors

Contributions

T.J.W. and F.S. planned and wrote the article with input from all other authors. Previously unpublished seismic data from Krafla were collected and analysed by P.E. and B.B. Also, D.K., R.P., B.B. and T.W. constructed Fig. 1; B.B., M.B., C.P. and I.J.H. collated data from Dabbahu and Krafla to build Figs 2 and 3; I.J.H. and T.W. conducted a new analysis of InSAR data to make Fig. 4; R.P. and C.P. created Fig. 5; T.J.W. and F.S. designed Fig. 6 with input from other authors.

Corresponding author

Correspondence to Tim J. Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Geophysical constraints on the dynamics of spreading centres from rifting episodes on land (PDF 815 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wright, T., Sigmundsson, F., Pagli, C. et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nature Geosci 5, 242–250 (2012). https://doi.org/10.1038/ngeo1428

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1428

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing