Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neutral buoyancy of titanium-rich melts in the deep lunar interior

Abstract

The absence of moonquakes originating deeper than about 1,100 km (ref. 1) implies that the lower mantle of the Moon could be partially molten. Up to 30% melt by volume has been estimated to exist between about 1,200 and 1,350 km depth2. However, the absence of recent volcanic activity at the Moon’s surface implies that such deep partial melts must be at least as dense as their surroundings. Here we use a combination of in situ synchrotron X-ray absorption techniques and molecular dynamics simulations to determine the density range of primitive lunar melts at pressures equivalent to those in the lunar interior. We find that only melts that contain about 16 wt% titanium dioxide are neutrally buoyant at depths corresponding to the top of the proposed partial melt zone. These titanium-rich melts are formed by deep partial melting of titanium-rich rocks. As such rocks are thought to have formed at shallow levels during crystallization of the lunar magma ocean, we infer that a significant vertical transport of mass occurred before melt formation. Our measurements therefore provide evidence for a large-scale overturn of the lunar mantle shortly after crystallization of the magma ocean and point to the continuing influence of a dense, titanium-rich reservoir on lunar interior evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of experimental conditions and run products.
Figure 2: Lunar melt densities from molecular dynamics calculations and resulting equation of state (EOS) parameters.
Figure 3: Comparison of lunar-magma density measurements with the lunar-mantle density profile.

Similar content being viewed by others

References

  1. Nakamura, Y. Farside deep moonquakes and the interior of the Moon. J. Geophys. Res. 110, E01001 (2005).

    Google Scholar 

  2. Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q. & Lognonne, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  Google Scholar 

  3. Sanloup, C., Guyot, F., Gillet, P., Fiquet, G., Mezouar, M. & Martinez, I. Density measurements of liquid Fe–S alloys at high-pressure. Geophys. Res. Lett. 27, 811–814 (2000).

    Article  Google Scholar 

  4. Sanloup, C., van Westrenen, W., Dasgupta, R., Maynard-Casely, H. & Perrillat, J-P. Compressibility change in iron-rich melt and implications for core formation models. Earth Planet. Sci. Lett. 306, 118–122 (2011).

    Article  Google Scholar 

  5. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Magmatic processes that produced lunar fire fountains. Geophys. Res. Lett. 30, 1513 (2003).

    Article  Google Scholar 

  6. Delano, J. W. Pristine lunar glasses—criteria, data, and implications. J. Geophys. Res. 91, D201–D213 (1986).

    Article  Google Scholar 

  7. Wagner, T. P. & Grove, T. L. Experimental constraints on the origin of lunar high-Ti ultramafic glasses. Geochim. Cosmochim. Acta 61, 1315–1327 (1997).

    Article  Google Scholar 

  8. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteorit. Planet. Sci. 38, 515–527 (2003).

    Article  Google Scholar 

  9. Guillot, B. & Sator, N. A computer simulation study of natural silicate melts. Part I: Low pressure properties. Geochim. Cosmochim. Acta 71, 1249–1265 (2007).

    Article  Google Scholar 

  10. Guillot, B. & Sator, N. A computer simulation study of natural silicate melts. Part II: High pressure properties. Geochim. Cosmochim. Acta 71, 4538–4556 (2007).

    Article  Google Scholar 

  11. Krawczynski, M. J. & Grove, T. L. Experimental investigations of fO2 effects on Apollo 17 orange glass phase equilibria. Lunar Planet. Sci. Conf. 39, 1231 (2008).

    Google Scholar 

  12. Lange, R. A. A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3–SiO2 liquids from 700 to 1,900 K: extension to crustal magmatic temperatures. Contrib. Mineral. Petrol. 130, 1–11 (1997).

    Article  Google Scholar 

  13. Ghiorso, M. S. & Kress, V. C. An equation of state for silicate melts. II calibration of volumetric properties at 105 Pa. Am. J. Sci. 304, 679–751 (2004).

    Article  Google Scholar 

  14. Delano, J. W. Buoyancy-driven melt segregation in the Earth’s Moon 1. Numerical results. Proc. Lunar Planet. Sci. Conf. 20, 3–12 (1990).

    Google Scholar 

  15. Lange, R. A. & Carmichael, I. S. E. Density of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946 (1987).

    Article  Google Scholar 

  16. Smith, J. R. & Agee, C. B. Compressibility of molten green glass and crystal-liquid density crossovers in low-Ti lunar magma. Geochim. Cosmochim. Acta 61, 2139–2145 (1997).

    Article  Google Scholar 

  17. van Kan Parker, M., Agee, C. B., Duncan, M. S. & van Westrenen, W. Compressibility of molten intermediate-high Ti lunar glass and implications for density cross-overs in the lunar mantle. Geochim. Cosmochim. Acta 75, 1161–1172 (2011).

    Article  Google Scholar 

  18. Circone, S. & Agee, C. B. Compressibility of molten high-Ti mare glass: Evidence for crystal-liquid density inversions in the lunar mantle. Geochim. Cosmochim. Acta 60, 2709–2720 (1996).

    Article  Google Scholar 

  19. Sakamaki, T. et al. Density of high-Ti basalt magma at high pressure and origin of heterogeneities in the lunar mantle. Earth Planet. Sci. Lett. 299, 293–297 (2010).

    Article  Google Scholar 

  20. Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P. Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011).

    Article  Google Scholar 

  21. Khan, A., Maclennan, J., Taylor, S. R. & Connolly, J. A. D. Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modelling. J. Geophys. Res. 111, E05005 (2006).

    Google Scholar 

  22. Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).

    Article  Google Scholar 

  23. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts—combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  Google Scholar 

  24. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moons interior—implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  Google Scholar 

  25. de Vries, J., van den Berg, A. & van Westrenen, W. Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet. Sci. Lett. 292, 139–147 (2010).

    Article  Google Scholar 

  26. Beck, A. R. & Hess, P. C. Ilmenite solubility in lunar basalts as a function of temperature and pressure: Implications for petrogenesis. Lunar Planet. Sci. Conf. 35, 1807 (2004).

    Google Scholar 

  27. Wyatt, B. The melting and crystallisation behaviour of a natural clinopyroxene–ilmenite intergrowth. Contrib. Mineral. Petrol. 61, 1–9 (1977).

    Article  Google Scholar 

  28. van Kan Parker, M. Physical and Chemical Properties of Lunar Magma PhD thesis, VU Univ. Amsterdam (2011).

  29. de Vries, J., van den Berg, A. P. & van Westrenen, W. Numerical convection modelling of a compositionally stratified lunar mantle. Lunar Planet. Sci. Conf. 42, 1745 (2011).

    Google Scholar 

  30. van Kan Parker, M. et al. Calibration of a diamond capsule cell assembly for in situ determination of liquid properties in the Paris–Edinburgh press. High Press. Res. 30, 332–341 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a European Young Investigators award and Netherlands Space Office User Support Programme Space Research grant to W.v.W., and a European Research Council starting grant (FP7 grant agreement no. 259649) to C.S. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and thank D. R. Neuville for carrying out 1-bar density measurements.

Author information

Authors and Affiliations

Authors

Contributions

W.v.W., C.S. and M.v.K.P. devised the project. All authors participated in data acquisition. M.v.k.P., C.S., E.J.T., J-P.P., M.M., N.R. and W.v.W. carried out the in situ experiments. N.S. and B.G. carried out the computer simulations. W.v.W., M.v.K.P. and C.S. wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Wim van Westrenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kan Parker, M., Sanloup, C., Sator, N. et al. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nature Geosci 5, 186–189 (2012). https://doi.org/10.1038/ngeo1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing