Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Closure of the meridional overturning circulation through Southern Ocean upwelling

Abstract

The meridional overturning circulation of the ocean plays a central role in climate and climate variability by storing and transporting heat, fresh water and carbon around the globe. Historically, the focus of research has been on the North Atlantic Basin, a primary site where water sinks from the surface to depth, triggered by loss of heat, and therefore buoyancy, to the atmosphere. A key part of the overturning puzzle, however, is the return path from the interior ocean to the surface through upwelling in the Southern Ocean. This return path is largely driven by winds. It has become clear over the past few years that the importance of Southern Ocean upwelling for our understanding of climate rivals that of North Atlantic downwelling, because it controls the rate at which ocean reservoirs of heat and carbon communicate with the surface.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A schematic diagram of the Upper Cell and Lower Cell of the global MOC emanating from, respectively, northern and southern polar seas.
Figure 2: Key observations in the Southern Ocean.
Figure 3: Global MOC of the ocean obtained by tracer inversion
Figure 4: Air–sea fluxes over the Southern Ocean.
Figure 5: Idealized simulations of the ACC.

References

  1. Stommel, H. The abyssal circulation. Letter to the editors. Deep-Sea Res. 5, 80–82 (1958).

    Google Scholar 

  2. Hughes, G. O. & Griffiths, R. W. A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model. 12, 46–79 (2006).

    Google Scholar 

  3. Marshall, J. & Schott, F. Open ocean deep convection: Observations, models and theory. Rev. Geophys. 37, 1–64 (1999).

    Google Scholar 

  4. Munk, W. Abyssal recipes. Deep-Sea Res. 13, 707–730 (1966).

    Google Scholar 

  5. Munk, W. & Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. 145, 1977–2010 (1998).

    Google Scholar 

  6. Toole, J. M. The Brazil Basin tracer release experiment. Int. WOCE Newsl. 28, 25–28 (1997).

    Google Scholar 

  7. Kunze, E., Firing, E., Hummon, J., Chereskin, T. & Thurnherr, A. M. Global abyssal mixing inferred from lowered adcp shear and ctd strain profiles. J. Phys. Oceanogr. 36, 1553–1576 (2006).

    Google Scholar 

  8. Ledwell, J. R., Watson, A. J. & Law, C. S. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103, 21499–21529 (1998).

    Google Scholar 

  9. Ledwell, J. R., St Laurent, L. C., Girton, J. B. & Toole, J. M. Diapycnal mixing in the Antarctic circumpolar current. J. Phys. Oceanogr. 41, 241–246 (2011).

    Google Scholar 

  10. Sverdrup, H. U. On vertical circulation in the ocean due to the action of the wind with application to conditions within the Antarctic Circumpolar Current. Discov. Rep. VII, 139–170 (1933).

    Google Scholar 

  11. Döös, K. & Webb, D. J. The deacon cell and the other meridional cells of the southern ocean. J. Phys. Oceanogr. 24, 429–442 (1994).

    Google Scholar 

  12. Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I 42, 477–500 (1995).

    Google Scholar 

  13. Toggweiler, J. R. & Samuels, B. On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr. 28, 1832–1852 (1998).

    Google Scholar 

  14. Webb, D. J. & Suginohara, N. in Ocean Circulation and Climate (eds Siedler, G., Church, J. & Gould, J.) Chapter 4.2, 205–214 (Int. Geophys. Ser., vol. 77, Academic, 2001).

    Google Scholar 

  15. Deacon, G. E. R. The hydrology of the Southern Ocean. Discov. Rep. 15, 1–124 (1937).

    Google Scholar 

  16. Wyrtki, K. The Antarctic circumpolar current and the Antarctic polar front. Dtsch. Hydrogr. Z. 13, 153–174 (1960).

    Google Scholar 

  17. Jacobs, S. & Georgi, D. T. Observations on the southwest Indian/Antarctic Ocean. Deep-Sea Res. 24, 43–84 (1977).

    Google Scholar 

  18. McCartney, M. S. in A Voyage of Discovery: George Deacon 70th Anniversary Volume (ed. Angel, M. V.) 103–119 (Supplement to Deep-Sea Research, vol. 24, Pergamon, 1977).

    Google Scholar 

  19. Whitworth, T. III, Orsi, A. H., Kim, S-J., Nowlin, W. D. Jr & Locarnini, R. A. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) (Antarctic Research Series, American Geophysical Union, 1998).

    Google Scholar 

  20. Nowlin, W. D. & Klinck, J. M. The physics of the Antarctic Circumpolar Current. Rev. Geophys. Space Phys. 24, 469–491 (1986).

    Google Scholar 

  21. Orsi, A. H., Whitworth, T.W. III & Nowlin, W. D. Jr On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. 42, 641–673 (1995).

    Google Scholar 

  22. Pollard, R. T., Lucas, M. I. & Read, J. F. Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res. II 49, 3289–3305 (2002).

    Google Scholar 

  23. Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001).

    Google Scholar 

  24. Talley, L. D., Reid, J. L. & Robbins, P. E. Data-based meridional overturning streamfunctions for the global ocean. J. Clim. 16, 3213–3226 (2003).

    Google Scholar 

  25. Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).

    Google Scholar 

  26. Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon Cell. J. Phys. Oceanogr. 30, 3212–3222 (2000).

    Google Scholar 

  27. Karsten, R. & Marshall, J. Inferring the residual circulation of the Antarctic circulation current from observations using dynamical theory. J. Phys. Oceanogr. 32, 3315–3327 (2002).

    Google Scholar 

  28. Marshall, J., Shuckburgh, E., Jones, H. & Hill, C. Estimates and implications of near-surface eddy diffusivities deduced by trace transport in the southern ocean. J. Phys. Oceanogr. 36, 1806–1821 (2006).

    Google Scholar 

  29. Zika, J. D., Sloyan, B. M. & McDougall, T. J. Diagnosing the Southern Ocean overturning from tracer fields. J. Phys. Oceanogr. 39, 2926–2940 (2009).

    Google Scholar 

  30. Jenkins, A. & Jacobs, S. Circulation and melting beneath George VI Ice Shelf, Antarctica. J. Geophys. Res. 113, C04013 (2008).

    Google Scholar 

  31. Warren, B., LaCasce, J. & Robbins, P. A. On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current. J. Phys. Oceanogr. 26, 2297–2301 (1996).

    Google Scholar 

  32. Toole, J. M. Sea ice, winter convection, and the temperature minimum layer in the Southern Ocean. J. Geophys. Res. 86, 8037–8047 (1981).

    Google Scholar 

  33. Rintoul, S., Hughes, C. & Olbers, D. in Ocean Circulation and Climate (eds Siedler, G., Church, J. & Gould, J.) Chapter 4.6, 271–302 (Int. Geophys. Ser., vol. 77, Academic, 2001).

    Google Scholar 

  34. Gill, A. E., Green, J. S. A. & Simmons, A. J. Energy partition in the large-scale ocean circulation and the production of midocean eddies. Deep-Sea Res. 21, 499–528 (1974).

    Google Scholar 

  35. Marshall, J. & Radko, T. Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33, 2341–2354 (2003).

    Google Scholar 

  36. Wunsch, C. The work done by the wind on the oceanic general circulation. J. Phys Oceanogr. 28, 2332–2340 (1998).

    Google Scholar 

  37. McWilliams, J. C., Holland, W. R. & Chow, J. S. A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans 2, 213–291 (1978).

    Google Scholar 

  38. Marshall, J. On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr. 11, 1257–1271 (1981).

    Google Scholar 

  39. deSzoeke, R. A. & Levine, M. D. The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep-Sea Res. A 28, 1057–1085 (1981).

    Google Scholar 

  40. Johnson, G. C. & Bryden, H. L. On the size of the Antarctic Circumpolar Current. Deep-Sea Res. 36, 39–53 (1989).

    Google Scholar 

  41. Gnanadesikan, S. A simple predictive model for the structure of the oceanic pycnocline. Science 283, 2077–2079 (1999).

    Google Scholar 

  42. Olbers, D. & Visbeck, M. A model of the zonally-averaged stratification and overturning in the southern ocean. J. Phys. Oceanogr. 35, 1190–1205 (2005).

    Google Scholar 

  43. Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the souther ocean (meso) project. J. Phys. Oceanogr. 36, 2232–2252 (2006).

    Google Scholar 

  44. Danabasoglu, G. & McWilliams, J. C. Sensitivity of the global ocean circulation to parameterization of mesoscale tracer transports. J. Clim. 8, 2967–2980 (1995).

    Google Scholar 

  45. Abernathey, R., Marshall, J. & Ferreira, D. Dependence of southern ocean overturning on wind stress. J. Phys. Oceanogr. 41, 2261–2278 (2011).

    Google Scholar 

  46. Marshall, D. Subduction of water masses in an eddying ocean. J. Mar. Res. 55, 201–222 (1997).

    Google Scholar 

  47. Munk, W. H. & Palmen, E. Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 53–55 (1951).

    Google Scholar 

  48. Gille, S. The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr. 27, 2219–2231 (1997).

    Google Scholar 

  49. Rhines, P. B. & Young, W. R. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347–367 (1982).

    Google Scholar 

  50. Marshall, J. C., Olbers, D., Wolf-Gladrow, D. & Ross, H. Potential vorticity constraints on the hydrography and transport of the southern oceans. J. Phys. Oceanogr. 23, 465–487 (1993).

    Google Scholar 

  51. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Google Scholar 

  52. Alley, R. B. Abrupt climate change. Science 299, 2005–2010 (2003).

    Google Scholar 

  53. Huybers, P. & Wunsch, C. Paleophysical oceanography with an emphasis on transport rates. Annu. Rev. Marine Sci. 2, 1–34 (2010).

    Google Scholar 

  54. Sigman, D. & Boyle, E. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Google Scholar 

  55. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric CO2 . Nature 308, 621–624 (1984).

    Google Scholar 

  56. Knox, F. & McElroy, M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984).

    Google Scholar 

  57. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Google Scholar 

  58. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep southern ocean and deglacial CO2 Rise. Science 328, 1147–1151 (2010).

    Google Scholar 

  59. Anderson, R. F. et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009).

    Google Scholar 

  60. Crosta, X., Pichon, J. J. & Burckle, L. H. Reappraisal of seasonal Antarctic sea-ice extent at the last glacial maximum. Geophys. Res. Lett. 25, 2703–2706 (1998).

    Google Scholar 

  61. Gersonde, R., Crosta, X., Abelmann, A. & Armand, L. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24, 869–896 (2005).

    Google Scholar 

  62. Stephens, B. & Keeling, R. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Google Scholar 

  63. Stocker, T. F. The sea saw effect. Science 282, 61–62 (1998).

    Google Scholar 

  64. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

    Google Scholar 

  65. Toggweiler, J. R. & Russell, J. Ocean circulation in a warming climate. Nature 451, 286–288 (2008).

    Google Scholar 

  66. Watson, A. J. & Naveria Garabato, A. C. The role of Southern Ocean mixing and upwelling in glacial–interglacial atmospheric CO2 change. Tellus B 58, 73–87 (2006).

    Google Scholar 

  67. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Google Scholar 

  68. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Google Scholar 

  69. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).

    Google Scholar 

  70. Hall, A. & Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 15, 3043–3057 (2002).

    Google Scholar 

  71. Hogg, A., Meredith, M. P., Blundell, J. R. & Wilson, C. Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Clim. 21, 608–620 (2008).

    Google Scholar 

  72. Martinson, D. G., Stammerjohn, S. E., Ianuzzi, R. A., Smith, R. C. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. II 55, 1964–1987 (2008).

    Google Scholar 

  73. Holland, P. R., Jenkins, A. & Holland, D. M. Ice and ocean processes in the Bellingshausen Sea, Antarctica. J. Geophys. Res. 115, C05020 (2010).

    Google Scholar 

  74. Gordon, A. Lamont–Doherty Geological Observatory 1990 & 1991 Report 44–51 (Lamont-Doherty Geological Observatory of Columbia Univ., 1991).

  75. Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J. & Toggweiler, J. R. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Clim. 19, 6382–6390 (2006).

    Google Scholar 

  76. Boening, C. W., Dispert, A. & Visbeck, M. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).

    Google Scholar 

  77. Wong, A. P. S., Bindoff, N. L. & Church, J. A. Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature 400, 440–443 (1999).

    Google Scholar 

  78. Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23, 4342–4362 (2010).

    Google Scholar 

  79. Gille, S. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 2749–2765 (2008).

    Google Scholar 

  80. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Google Scholar 

  81. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The role of poleward-intensifying winds on Southern Ocean warming. J. Clim. 20, 5391–5400 (2007).

    Google Scholar 

  82. Henning, C. C. & Vallis, G. K. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr. 35, 880–897 (2005).

    Google Scholar 

  83. Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the southern ocean (meso) project. J. Phys. Oceanogr. 36, 2232–2252 (2006).

    Google Scholar 

  84. Treguier, A. M., Le Sommer, J., Molines, J. M. & de Cuevas, B. Response of the Southern Ocean to the southern annular mode: Interannual variability and multidecadal trend. J. Phys. Oceanogr. 40, 1659–1668 (2010).

    Google Scholar 

  85. Caldeira, K. & Duffy, P. B. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science 287, 620–622 (2000).

    Google Scholar 

  86. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004).

    Google Scholar 

  87. Lenton, A. & Matear, R. J. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21, GB2016 (2007).

    Google Scholar 

  88. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Google Scholar 

  89. Mignone, B. K., Gnanadesikan, A, Sarmiento, J. L. & Slater, R. D. Central role of Southern Hemisphere winds and eddies in modulating the anthropogenic carbon. Geophys. Res. Lett. 33, L01604 (2006).

    Google Scholar 

  90. Ito, T., Marshall, J. & Follows, M. What controls the uptake of transient tracers in the Southern Ocean? Glob. Biogeochem. Cycles 18, GB2021 (2004).

    Google Scholar 

  91. le Quéré, C., Rodenbeck, C. & Buitenhuis, E. T. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Google Scholar 

  92. Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, GB3016 (2008).

    Google Scholar 

  93. Zickfeld, K., Fyfe, J. C., Eby, M. & Weaver, A. J. Comment on ‘Saturation of the Southern Ocean CO2 sink due to recent climate change’. Science 319, 570–571 (2008).

    Google Scholar 

  94. Meehl, G. A. et al. in IPCC Climate Change: The Physical Science Basis (eds Solomon, S. et al.) 747–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  95. Broecker, W. S. The biggest chill. Nat. Hist. Mag. 97, 74–82 (1987).

    Google Scholar 

  96. Broecker, W. S. The great ocean conveyor. Oceanography 4, 79–89 (1991).

    Google Scholar 

  97. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986).

    Google Scholar 

  98. Schmitz, W. J. Jr On the World Ocean Circulation, 1 & II, Tech. Rep. WHOI-96-O3&O8 (Woods Hole Oceanographic Institute, 1996).

    Google Scholar 

  99. Richardson, P. L. On the history of meridional overturning circulation schematic diagrams. Prog. Oceanogra. 76, 466–486 (2008).

    Google Scholar 

  100. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans, their Physics, Chemistry, and General Biology (Prentice Hall, 1942).

    Google Scholar 

  101. Ren, L., Speer, K. & Chassignet, E. P. The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res. 116, C08031 (2011).

    Google Scholar 

Download references

Acknowledgements

We would like to thank our many colleagues for discussions and comments during the writing of this Review: in particular, R. Abernathey, E. Boyle, J-M. Campin, D. Ferreira, R. Ferrari, M. Follows, P. Huybers, D. Marshall, D. McGee, R. Toggweiler, R. Tulloch and A. Watson. Thanks also to N. Wienders, R. Tulloch and R. Windman for help in preparation of the figures. This study was supported by the Polar Programs section of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Marshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marshall, J., Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geosci 5, 171–180 (2012). https://doi.org/10.1038/ngeo1391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1391

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing