The Late Ordovician period, ending 444 million years ago, was marked by the onset of glaciations. The expansion of non-vascular land plants accelerated chemical weathering and may have drawn down enough atmospheric carbon dioxide to trigger the growth of ice sheets.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Climate windows of opportunity for plant expansion during the Phanerozoic
Nature Communications Open Access 04 August 2022
-
A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction
Communications Earth & Environment Open Access 05 April 2022
-
Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres
Scientific Reports Open Access 17 June 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.



References
Trotter, J. A., Williams, I. S., Barnes, C. R., Lecuyer, C. & Nicoll, R. S. Science 321, 550–554 (2008).
Berner, R. A. Science 276, 544–546 (1997).
Berner, R. A. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
Bergman, N. M., Lenton, T. M. & Watson, A. J. Am. J. Sci. 304, 397–437 (2004).
Tobin, K. J. & Bergstrom, S. M. Palaeogeog. Palaeoclim. Palaeoecol. 181, 399–417 (2002).
Tobin, K. J., Bergström, S. M. & De La Garza, P. Palaeogeog. Palaeoclim. Palaeoecol. 226, 187–204 (2005).
Yapp, C. J. & Poths, H. Earth Planet. Sci. Lett. 137, 71–82 (1996).
Gibbs, M. T., Barron, E. J. & Kump, L. R. Geology 25, 447–450 (1997).
Herrmann, A. D., Patzkowsky, M. E. & Pollard, D. Geology 31, 485–488 (2003).
Kump, L. R. et al. Palaeogeog. Palaeoclim. Palaeoecol. 152, 173–187 (1999).
Young, S. A., Saltzman, M. R., Foland, K. A., Linder, J. S. & Kump, L. R. Geology 37, 951–954 (2009).
Nardin, E. et al. Geol. Soc. Am. Bull. 123, 1181–1192 (2011).
Saltzman, M. R. & Young, S. A. Geology 33, 109–112 (2005).
Pope, M. C. & Steffen, J. B. Geology 31, 63–66 (2003).
Berry, W. B. N. Geol. Soc. Am. S. 466, 141–147 (2010).
Bateman, R. M. et al. Annu. Rev. Ecol. Syst. 29, 263–292 (1998).
Moulton, K. & Berner, R. A. Geology 26, 895–898 (1998).
Wellman, C. H. & Gray, J. Phil. Trans. R. Soc. Lond. B 355, 717–732 (2000).
Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P. New Phytol. 188, 365–369 (2010).
Qiu, Y.-L. et al. Proc. Natl Acad. Sci.USA 103, 15511–15516 (2006).
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Nature 397, 491–497 (1999).
Algeo, T. J. & Scheckler, S. E. Phil. Trans. R. Soc. Lond. B 353, 113–130 (1998).
Steemans, P. et al. Science 324, 353 (2009).
Poulton, S. W. & Raiswell, R. Am. J. Sci. 302, 774–805 (2002).
Sheehan, P. M. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2003).
Acknowledgements
We thank the Earth and Life Systems Alliance (ELSA) for funding this research. T.M.L. is also supported by NERC (NE/I005978/1). L.D. and N.P. are also supported by an EVO500 grant from the ER AdG program. P. Bota provided assistance with GC-MS.
Author information
Authors and Affiliations
Contributions
T.M.L. and L.D. designed the study. M.C. conducted the microcosm experiments with input from N.P. and L.D. M.C., M.J., L.D. and T.M.L. conducted geochemical analyses. N.P. and L.D. identified acids in moss exudates. T.M.L. did the modelling and sensitivity analyses. T.M.L. and L.D. wrote the paper with input from M.J., M.C. and N.P.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
First plants cooled the Ordovician (PDF 806 kb)
Rights and permissions
About this article
Cite this article
Lenton, T., Crouch, M., Johnson, M. et al. First plants cooled the Ordovician. Nature Geosci 5, 86–89 (2012). https://doi.org/10.1038/ngeo1390
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1390
Further reading
-
A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction
Communications Earth & Environment (2022)
-
Climate windows of opportunity for plant expansion during the Phanerozoic
Nature Communications (2022)
-
The future lifespan of Earth’s oxygenated atmosphere
Nature Geoscience (2021)
-
Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply
Nature Geoscience (2021)
-
Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation
Nature Geoscience (2021)