Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera

Subjects

Abstract

Large-scale expressions of lunar tectonics—contractional wrinkle ridges and extensional rilles or graben—are directly related to stresses induced by mare basalt-filled basins1,2. Basin-related extensional tectonic activity ceased about 3.6 Gyr ago, whereas contractional tectonics continued until about 1.2 Gyr ago2. In the lunar highlands, relatively young contractional lobate scarps, less than 1 Gyr in age, were first identified in Apollo-era photographs3. However, no evidence of extensional landforms was found beyond the influence of mare basalt-filled basins and floor-fractured craters. Here we identify previously undetected small-scale graben in the farside highlands and in the mare basalts in images from the Lunar Reconnaissance Orbiter Camera. Crosscut impact craters with diameters as small as about 10 m, a lack of superposed craters, and graben depths as shallow as 1 m suggest these pristine-appearing graben are less than 50 Myr old. Thus, the young graben indicate recent extensional tectonic activity on the Moon where extensional stresses locally exceeded compressional stresses. We propose that these findings may be inconsistent with a totally molten early Moon, given that thermal history models for this scenario predict a high level of late-stage compressional stress4,5,6 that might be expected to completely suppress the formation of graben.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Small-scale graben with lobate scarps.
Figure 2: Vitello graben in nearside mare basalts (33.1 ° S, 323° E).
Figure 3: Virtanen graben in the farside highlands (17.8 ° N, 180.8° E).
Figure 4: Crosscutting relations between graben and impact craters.

References

  1. 1

    Wilhelms, D. E. in The Geologic History of the Moon Vol. 1348 (US Geol. Surv. Prof. Paper, 1987).

    Book  Google Scholar 

  2. 2

    Watters, T. R. & Johnson, C. L. in Planetary Tectonics (eds Watters, T. R. & Schultz, R. A.) 121–182 (Cambridge Univ. Press, 2010).

    Google Scholar 

  3. 3

    Watters, T. R. et al. Evidence of recent thrust faulting on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Science 329, 936–940 (2010).

    Article  Google Scholar 

  4. 4

    Binder, A. B. Post-Imbrian global lunar tectonism: Evidence for an initially totally molten moon. Earth Moon Planets 26, 117–133 (1982).

    Article  Google Scholar 

  5. 5

    Binder, A. B. & Lange, M. A. On the thermal history of the moon of fission origin. Moon 17, 29–45 (1980).

    Article  Google Scholar 

  6. 6

    Pritchard, M. E. & Stevenson, D. J. in Origin of the Earth and Moon (eds Canup, R. & Righter, K.) (Univ. Arizona Press, 2000).

    Google Scholar 

  7. 7

    Wolfe, E. W. et al. in The Geologic Investigation of the Taurus-Littrow Valley, Apollo 17 Landing Site Vol. 1080 (US Geol. Surv. Prof. Paper, 1981).

    Google Scholar 

  8. 8

    Tran, T. et al. Generating digital terrain models using LROC NAC images. At ASPRS/CaGIS 2010 Fall Specialty Conference (ISPRS Technical Commission VI & AutoCarto, 2010).

  9. 9

    Schultz, R. A., Hauber, E., Katternhorn, S. A., Okubo, C. H. & Watters, T. R. Interpretation and analysis of planetary structures. J. Struct. Geol. 32, 855–875 (2010).

    Article  Google Scholar 

  10. 10

    Wyrick, D., Ferrill, D. A., Morris, A. P., Coltion, S. L. & Sims, D. W. Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res. 109, E06005 (2004).

    Article  Google Scholar 

  11. 11

    Head, J. W. & Wilson, L. Lunar graben formation due to near-surface deformation accompanying dike emplacement. Planet. Space Sci. 41, 719–727 (1993).

    Article  Google Scholar 

  12. 12

    Trask, N. J. in Geologic Comparison of Mare Materials in the Lunar Equatorial Belt, Including Apollo 11 and Apollo 12 Landing Sites Vol. 750-D D138–D144 (US Geol. Survey Prof. Paper, 1971).

    Google Scholar 

  13. 13

    Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001).

    Article  Google Scholar 

  14. 14

    Arvidson, R., Drozd, R. J., Hohenberg, C. M., Morgan, C. J. & Poupeau, G. Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface. Moon 13, 67–79 (1975).

    Article  Google Scholar 

  15. 15

    Lucchitta, B. K. & Watkins, J. A. Age of graben systems on the Moon. Proc. Lunar Planet. Sci. Conf. 9, 3459–3472 (1978).

    Google Scholar 

  16. 16

    Boyce, J. M. Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs. Proc. Lunar Planet. Sci. Conf. 7, 2717–2728 (1976).

    Google Scholar 

  17. 17

    Hiesinger, H., Jaumann, R., Neukam, G. & Head, J. W. Ages of mare basalts on the lunar nearside. J. Geophys. Res. 105, 29239–29276 (2000).

    Article  Google Scholar 

  18. 18

    Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 108, E75065 (2003).

    Article  Google Scholar 

  19. 19

    Solomon, S. C. & Head, J. W. Vertical movement in mare basins: relation to mare emplacement, basin tectonics and lunar thermal history. J. Geophys. Res. 84, 1667–1682 (1979).

    Article  Google Scholar 

  20. 20

    Solomon, S. C. & Head, J. W. Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. Space Phys. 18, 107–141 (1980).

    Article  Google Scholar 

  21. 21

    Solomon, S. C. & Chaiken, J. Thermal expansion and thermal stress in the Moon and terrestrial planets: Clues to early thermal history. Proc. Lunar Sci. Conf. 7, 3229–3243 (1976).

    Google Scholar 

  22. 22

    Schultz, P. H. Floor-fractured lunar craters. Moon 15, 241–273 (1976).

    Article  Google Scholar 

  23. 23

    Hall, J. L., Solomon, S. C. & Head, J. W. Lunar floor-fractured craters: Evidence for viscous relaxation of crater topography. J. Geophys. Res. 86, 9537–9552 (1981).

    Article  Google Scholar 

  24. 24

    Wichmanand, R. W. & Schultz, P. H. Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: Implications of crater modification by viscous relaxation and igneous intrusion models. J. Geophys. Res. 100, 21201–21218 (1995).

    Article  Google Scholar 

  25. 25

    Dombard, A. J. & Gillis, J. J. Testing the viability of topographic relaxation as a mechanism for the formation of lunar floor-fractured craters. J. Geophys. Res. 106, 27901–27910 (2001).

    Article  Google Scholar 

  26. 26

    Schultz, P. H. & Spudis, P. D. The beginning and end of lunar volcanism. Nature 302, 233–236 (1983).

    Article  Google Scholar 

  27. 27

    Nakamura, Y. et al. Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior. Proc. Lunar Sci. Conf. 10, 2299–2309 (1979).

    Google Scholar 

  28. 28

    Gagnepain-Beyneix, J., Lognonné, P., Chenet, H. & Spohn, T. Seismic models of the Moon and constraints on temperature and mineralogy. Phys. Earth Planet. Int. 159, 140–166 (2006).

    Article  Google Scholar 

  29. 29

    Weber, R. C., Lin, P., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H.J. Melosh for helpful comments that greatly improved the manuscript. We gratefully acknowledge the LRO and LROC engineers and technical support personnel. This work was supported by National Aeronautics and Space Administration (NASA) Grant NNX08AM73G.

Author information

Affiliations

Authors

Contributions

T.R.W. drafted the manuscript. M.S.R. is the principal investigator of the LRO Cameras, was responsible for development and operation of the camera system, and contributed to scientific interpretations. M.E.B. assisted with NAC image processing and the identification of tectonic features. T.T. generated the NAC digital terrain models used in the investigation. B.W.D. assisted in the age estimates of the tectonic features. All of the authors contributed to interpretation and analysis of the data.

Corresponding author

Correspondence to Thomas R. Watters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 735 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watters, T., Robinson, M., Banks, M. et al. Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Nature Geosci 5, 181–185 (2012). https://doi.org/10.1038/ngeo1387

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing