Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise

Abstract

The formation of oceanic crust at mid-ocean ridges is a fundamental component of plate tectonics. A large fraction of the new crust is created when magmas in the lower crust cool to form gabbroic rocks. The duration of magmatism during formation of the new gabbroic crust is expected to vary with plate-spreading rate and has been constrained by dating gabbroic rocks at the slow-spreading Southwest Indian Ridge and Mid-Atlantic Ridge1,2,3,4. Here we present high-precision U–Pb dating of zircon minerals from gabbroic rocks formed at the fast-spreading East Pacific Rise and exposed at Hess Deep. We find that the zircons formed between 1.420 and 1.271 (±0.006–0.081) million years ago. Within individual samples, the zircon minerals exhibit a range in formation dates of up to 0.124 Myr, consistent with either protracted crystallization from a magma or assimilation into the magma of older zircons from adjacent rocks. The variability of zircon dates is comparable to that measured at the slow-spreading Mid-Atlantic Ridge3. We conclude that the timescales of magmatic processes in the lower crust may be similar at slow- and fast-spreading ridges, implying that the duration of crust formation at mid-ocean ridges is not only controlled by spreading rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic setting of Hess Deep.
Figure 2: Representative zircon cathodoluminescence images.
Figure 3: Single grain and grain fragment 206Pb/238U zircon dates from Hess Deep gabbro and gabbronorites.

Similar content being viewed by others

References

  1. Baines, A. G. et al. SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bank on the ultraslow-spreading Southwest Indian Ridge. Earth Planet. Sci. Lett. 287, 540–550 (2009).

    Article  Google Scholar 

  2. Grimes, C. B., John, B. E., Cheadle, M. J. & Wooden, J. L. Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochem. Geophys. Geosyst. 9, Q08012 (2008).

    Article  Google Scholar 

  3. Lissenberg, C. J., Rioux, M., Shimizu, N., Bowring, S. A. & Mevel, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).

    Article  Google Scholar 

  4. Schwartz, J. J. et al. Dating the growth of oceanic crust at a slow-spreading ridge. Science 310, 654–657 (2005).

    Article  Google Scholar 

  5. Detrick, R. S. et al. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326, 35–41 (1987).

    Article  Google Scholar 

  6. Hussenoeder, S. A., Collins, J. A., Kent, G. M., Detrick, R. S. & TERA Group, Seismic analysis of the axial magma chamber reflector along the southern East Pacific Rise from conventional reflection profiling. J. Geophys. Res. 101, 22087–22105 (1996).

    Article  Google Scholar 

  7. Hooft, E. E. E., Detrick, R. S. & Kent, G. M. Seismic structure and indicators of magma budget along the Southern East Pacific Rise. J. Geophys. Res. 102, 27319–27340 (1997).

    Article  Google Scholar 

  8. Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J. Geophys. Res. 105, 23537–23555 (2000).

    Article  Google Scholar 

  9. Crawford, W. C. & Webb, S. C. Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°–10° N. Earth Planet. Sci. Lett. 203, 117–130 (2002).

    Article  Google Scholar 

  10. Hey, R. N., Deffeyes, K. S., Johnson, G. L. & Lowrie, A. The Galapagos Triple Junction and plate motions in the East Pacific. Nature 237, 20–22 (1972).

    Article  Google Scholar 

  11. Lonsdale, P. Structural pattern of the Galapagos Microplate and evolution of the Galapagos Triple Junctions. J. Geophys. Res. 93, 13551–13574 (1988).

    Article  Google Scholar 

  12. Lonsdale, P. Regional shape and tectonics of the equatorial East Pacific Rise. Mar. Geophys. Res. 3, 295–315 (1977).

    Article  Google Scholar 

  13. Karson, J. A. et al. Structure of uppermost fast-spread oceanic crust exposed at the Hess Deep Rift: Implications for subaxial processes at the East Pacific Rise. Geochem. Geophys. Geosyst. 3, 2001GC000155 (2002).

    Article  Google Scholar 

  14. Francheteau, J. et al. 1 Myr East Pacific Rise oceanic crust and uppermost mantle exposed by rifting in Hess Deep (equatorial Pacific Ocean). Earth Planet. Sci. Lett. 101, 281–295 (1990).

    Google Scholar 

  15. MacLeod, C. J., Célérier, B., Früh-Green, G. L. & Manning, C. E. in Proc. Ocean Drilling Program, Scientific Results, Vol. 147 (eds Mével, C., Gillis, K. M., Allan, J. F. & Meyer, P. S.) (Ocean Drilling Program, 1996).

    Google Scholar 

  16. MacLeod, C. J., Teagle, D. A. H., Gillis, K. M. & Shillington, D. J. RRS James Cook Cruise JC21 Scientific Party, Morphotectonics of Hess Deep: Preliminary results of RRS James Cook Cruise JC21. AGU (Fall Meeting), V43I-08 (2008).

  17. Lissenberg, C. J., MacLeod, C. J., Howard, K. A. & Godard, M. Pervasive reactive melt migration through the lower oceanic crust. AGU (Fall Meeting), V13F-02 (2011).

  18. Wendt, I. & Carl, C. The statistical distribution of the mean squared weighted deviation. Chem. Geol. 86, 275–285 (1991).

    Google Scholar 

  19. Vermeesch, P. HelioPlot, and the treatment of overdispersed (U–Th–Sm)/He data. Chem. Geol. 271, 108–111 (2010).

    Article  Google Scholar 

  20. MacLeod, C. J. & Yaouancq, G. A fossil melt lens in the Oman ophiolite: Implications for magma chamber processes at fast-spreading ridges. Earth Planet. Sci. Lett. 176, 357–373 (2000).

    Google Scholar 

  21. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

  22. Turner, S., Beier, C., Niu, Y. & Cook, C. U–Th–Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30′ N,10°30′ N, and 11°20′ N. Geochem. Geophys. Geosyst. 12, Q0AC12 (2011).

    Article  Google Scholar 

  23. Durant, D. T. & Toomey, D. R. Evidence and implications of crustal magmatism on the flanks of the East Pacific Rise. Earth Planet. Sci. Lett. 287, 130–136 (2009).

    Article  Google Scholar 

  24. Kent, G. M. et al. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 406, 614–618 (2000).

    Article  Google Scholar 

  25. Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. 101, 2847–2857 (1996).

    Article  Google Scholar 

  26. Mattinson, J. M. Zircon U/Pb chemical abrasion (CA-TIMS) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  Google Scholar 

  27. Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. 12, Q0AA19 (2011).

    Google Scholar 

  28. McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 12, Q0AA18 (2011).

    Google Scholar 

  29. Schouten, H., Smith, D. K., Montési, L. G. J., Zhu, W. & Klein, E. M. Cracking of lithosphere north of the Galapagos triple junction. Geology 36, 339–342 (2008).

    Article  Google Scholar 

  30. Smith, D. K., Schouten, H., Zhu, W.-l., Montési, L. G. J. & Cann, J. R. Distributed deformation ahead of the Cocos–Nazca Rift at the Galapagos triple junction. Geochem. Geophys. Geosyst. 12, Q11003 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by National Science Foundation grant OCE-0727914 (S.A.B.), a Cardiff University International Collaboration Award (C.J.L.) and Natural Environment Research Council grant NE/C509023/1 (C.J.M.). We thank L. Koons for separating the Hess Deep zircons, O. Jagoutz and F. Frey for useful discussions of Th and U partitioning in zircon, and D. Wilson for reading and commenting on a draft of the manuscript. We thank J. Schwartz and G. Baines for detailed and useful reviews.

Author information

Authors and Affiliations

Authors

Contributions

M.R. performed zircon geochronology and wrote the paper. C.J.L. collected the samples, performed trace element analyses and generated cathodoluminescence and backscattered electron images. N.M.M. provided statistical expertise. S.A.B. assisted with zircon geochronology. C.J.M. collected the samples and drafted the maps. E.H. generated Y and Hf maps and cathodoluminescence and backscattered electron images. N.S. performed trace element analyses.

Corresponding author

Correspondence to Matthew Rioux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2903 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rioux, M., Johan Lissenberg, C., McLean, N. et al. Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise. Nature Geosci 5, 275–278 (2012). https://doi.org/10.1038/ngeo1378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing