Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Palaeozoic landscapes shaped by plant evolution

Abstract

Fluvial landscapes diversified markedly over the 250 million years between the Cambrian and Pennsylvanian periods. The diversification occurred in tandem with the evolution of vascular plants and expanding vegetation cover. In the absence of widespread vegetation, landscapes during the Cambrian and Ordovican periods were dominated by rivers with wide sand-beds and aeolian tracts. During the late Silurian and Devonian periods, the appearance of vascular plants with root systems was associated with the development of channelled sand-bed rivers, meandering rivers and muddy floodplains. The widespread expansion of trees by the Early Pennsylvanian marks the appearance of narrow fixed channels, some representing anabranching systems, and braided rivers with vegetated islands. We conclude that the development of roots stabilized the banks of rivers and streams. The subsequent appearance of woody debris led to log jams that promoted the rapid formation of new river channels. Our contention is supported by studies of modern fluvial systems and laboratory experiments. In turn, fluvial styles influenced plant evolution as new ecological settings developed along the fluvial systems. We suggest that terrestrial plant and landscape evolution allowed colonization by an increasingly diverse array of organisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Palaeozoic events of fluvial and landscape development, in relation to plant evolution and atmospheric change.
Figure 2: Plants and fluvial systems in ancient and modern settings.
Figure 3: Palaeozoic diversification of fluvial style.
Figure 4: Experimental study of effects of vegetation on channels.

References

  1. 1

    Corenblit, D. et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth Sci. Rev. 106, 307–331 (2011).

    Google Scholar 

  2. 2

    Montgomery, D. R. & Piégay, H. Wood in rivers: interactions with channel morphology and processes. Geomorphology 51, 1–5 (2003).

    Google Scholar 

  3. 3

    Darwin, C. The Formation of Vegetated Mould through the Action of Worms with Observation of their Habitats (John Murray, 1883).

    Google Scholar 

  4. 4

    Corenblit, D., Steiger, J., Gurnell, A. M. & Tabacchi, E. Darwinian origin of landforms. Earth Surf. Proc. Land. 32, 2070–2073 (2007).

    Google Scholar 

  5. 5

    Fisher, S. G., Heffernan, J. B., Sponseller, R. A. & Welter, J. R. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89, 84–96 (2007).

    Google Scholar 

  6. 6

    Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: Physical-biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).

    Google Scholar 

  7. 7

    Osterkamp, W. R., Hupp, C. R. & Stoffel, M. The interactions between vegetation and erosion: new directions for research at the interface of ecology and geomorphology. Earth Surf. Proc. Land. http://dx.doi.org/101002/esp.2173 (2011).

  8. 8

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Google Scholar 

  9. 9

    Algeo, T. J., Berner, R. A., Maynard, J. B. & Scheckler, S. E. Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of vascular land plants? GSA Today 5, 64–66 (1995).

    Google Scholar 

  10. 10

    Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. B 353, 113–130 (1998).

    Google Scholar 

  11. 11

    Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Google Scholar 

  12. 12

    Berner, R. A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326 (2003).

    Google Scholar 

  13. 13

    Schumm, S. A. Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geol. Soc. Am. Bull. 79, 1573–1588 (1968).

    Google Scholar 

  14. 14

    Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    Google Scholar 

  15. 15

    Cotter, E. in Fluvial Sedimentology (ed. Miall, A. D.) 361–383 (Canadian Society of Petroleum Geologists Memoir 5, 1978).

    Google Scholar 

  16. 16

    Long, D. G. F. in The Precambrian Earth: Tempos and Events (eds Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U. & Catuneanu, O.) 660–663 (Elsevier, 2004).

    Google Scholar 

  17. 17

    Long, D. G. F. in From River to Rock Record: The Preservation of Fluvial Sediments and their subsequent Interpretation (eds Davidson, S., Leleu, S. & North, C. P.) 37–61 (SEPM, 2011).

    Google Scholar 

  18. 18

    Davies, N. S., Gibling, M. R. & Rygel, M. C. Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58, 220–258 (2011).

    Google Scholar 

  19. 19

    Dott, R. H. Jr & Byers, C. W. SEPM research conference on modern shelf and ancient cratonic sedimentation - the orthoquartzite-carbonate suite revisited. J. Sedim. Petrol. 51, 329–347 (1981).

    Google Scholar 

  20. 20

    Dott, R. H. Jr, Byers, C. W., Fielder, G. W., Stenzel, S. R. & Winfree, K. E. Aeolian to marine transition in Cambro-Ordovician cratonic sheet sandstones of the northern Mississippi valley, U. S. A.. Sedimentology 33, 345–367 (1986).

    Google Scholar 

  21. 21

    Dott, R. H. Jr The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes. J. Geol. 111, 387–405 (2003).

    Google Scholar 

  22. 22

    Dalrymple, R. W., Narbonne, G. M. & Smith, L. Eolian action and the distribution of Cambrian shales in North America. Geology 13, 607–610 (1985).

    Google Scholar 

  23. 23

    Went, D. J. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52, 693–713 (2005).

    Google Scholar 

  24. 24

    Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).

    Google Scholar 

  25. 25

    Taylor, W. A. & Strother, P. K. Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, USA. Rev. Palaeobot. Palyno. 151, 41–50 (2008).

    Google Scholar 

  26. 26

    Steemans, P. et al. Origin and radiation of the earliest vascular land plants. Science 324, 353 (2009).

    Google Scholar 

  27. 27

    Tomescu, A. M. F., Pratt, L. M., Rothwell, G. W., Strother, P. K. & Nadon, G. C. Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283, 46–59 (2009).

    Google Scholar 

  28. 28

    Rubinstein, C. V., Gerrienne, P., de la Puente, G. S. L., Astini, R. A. & Steemans, P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 188, 365–369 (2010).

    Google Scholar 

  29. 29

    Raven, J. A. & Andrews, M. Evolution of tree nutrition. Tree Physiol. 30, 1050–1071 (2010).

    Google Scholar 

  30. 30

    Kidston, R. & Lang, W. H. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part I. Rhynia gwynne-vaughani, Kidston and Lang. Trans. R. Soc. Edin. 51, 761–784 (1917).

    Google Scholar 

  31. 31

    Trewin, N. H., Fayers, S. R. & Kelman, R. Subaqueous silicification of the contents of small ponds in an Early Devonian hot-spring complex, Rhynie, Scotland. Can. J. Earth Sci. 40, 1697–1712 (2003).

    Google Scholar 

  32. 32

    Dawson, J. W. On the fossil plants from the Devonian rocks of Canada. Q. J. Geol. Soc. Lond. 15, 477–488 (1859).

    Google Scholar 

  33. 33

    Boyce, C. K. et al. Devonian landscape heterogeneity recorded by a giant fungus. Geology 35, 399–402 (2007).

    Google Scholar 

  34. 34

    Małkowski, K. & Racki, G. A global biogeochemical perturbation across the Silurian-Devonian boundary: Ocean-continent-biosphere feedbacks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 244–254 (2009).

    Google Scholar 

  35. 35

    Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Early Devonian: A wildfire-derived Konservat-Lagerstatte. Rev. Palaeobot. Palyno. 142, 131–136 (2006).

    Google Scholar 

  36. 36

    Gerrienne, P. et al. A simple type of wood in two Early Devonian plants. Science 333, 837 (2011).

    Google Scholar 

  37. 37

    Davies, N. S. & Gibling, M. R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38, 51–54 (2010).

    Google Scholar 

  38. 38

    Kennedy, K. & Gibling, M. R. The Campbellton Formation of New Brunswick, Canada: paleoenvironments in an important Early Devonian terrestrial locality. Can. J. Earth Sci. 48, 48, 1561–1580 (2011).

    Google Scholar 

  39. 39

    Stein, W. E., Mannolini, F., Hernick, L. V., Landing, E. & Berry, C. M. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa. Nature 446, 904–907 (2007).

    Google Scholar 

  40. 40

    Mintz, J. S., Driese, S. G. & White, J. D. Environmental and ecological variability of Middle Devonian (Givetian) forests in Appalachian Basin paleosols, New York, United States. Palaios 25, 85–96 (2010).

    Google Scholar 

  41. 41

    Godderis, Y. & Joachimski, M. M. Global change in the Late Devonian: modelling the Frasnian-Famennian short-term carbon isotope excursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 309–329 (2004).

    Google Scholar 

  42. 42

    Decombeix, A.-L., Meyer-Berthaud, B. & Galtier, J. Transitional changes in arborescent lignophytes at the Devonian - Carboniferous boundary. J. Geol. Soc. Lond. 168, 547–557 (2011).

    Google Scholar 

  43. 43

    Falcon-Lang, H. J. & Galtier, J. Anatomically-preserved tree-trunks in late Mississippian (Serpukhovian, late Pendleian-Arnsbergian) braided fluvial channel facies, near Searston, southwest Newfoundland, Canada. Rev. Palaeobot. Palynol. 160, 154–162 (2010).

    Google Scholar 

  44. 44

    Falcon-Lang, H. J. & Bashforth, A. R. Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland. Rev. Palaeobot. Palynol. 135, 223–243 (2005).

    Google Scholar 

  45. 45

    DiMichele, W. A., Cecil, C. B., Montañez, I. P. & Falcon-Lang, H. J. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. Int. J. Coal Geol. 83, 329–344 (2010).

    Google Scholar 

  46. 46

    Falcon-Lang, H. J. et al. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology 37, 923–926 (2009).

    Google Scholar 

  47. 47

    Falcon-Lang, H. J. et al. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Geology 39, 371–374 (2011).

    Google Scholar 

  48. 48

    Fielding, C. R., Allen, J. P., Alexander, J. & Gibling, M. R. A facies model for fluvial systems in the seasonal tropics and subtropics. Geology 37, 623–626 (2009).

    Google Scholar 

  49. 49

    Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461 (2001).

    Google Scholar 

  50. 50

    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).

    Google Scholar 

  51. 51

    Gastaldo, R. A. & Degges, C. W. Sedimentology and paleontology of a Carboniferous log jam. Int. J. Coal Geol. 69, 103–118 (2007).

    Google Scholar 

  52. 52

    Gibling, M. R., Bashforth, A. R., Falcon-Lang, H. J., Allen, J. P. & Fielding, C. R. Log jams and flood sediment buildup caused channel abandonment and avulsion in the Pennsylvanian of Atlantic Canada. J. Sedim. Res 80, 268–287 (2010).

    Google Scholar 

  53. 53

    Nichols, G. J. & Jones, T. P. Fusain in Carboniferous shallow marine sediments, Donegal, Ireland: the sedimentological effects of wildfire. Sedimentology 39, 487–502 (1992).

    Google Scholar 

  54. 54

    Marriott, S. B., Wright, V. P. & Williams, B. P. J. in Fluvial Sedimentology VII (eds Blum, M. D., Marriott, S. B. & Leclair, S. F.) 517–529 (Blackwell, 2005).

    Google Scholar 

  55. 55

    Davies, N. S. & Gibling, M. R. Evolution of fixed-channel alluvial plains in response to Carboniferous vegetation. Nature Geosci. 4, 629–633 (2011).

    Google Scholar 

  56. 56

    Gurnell, A. M. et al. Wood storage within the active zone of a large European gravel-bed river. Geomorphology 34, 55–72 (2000).

    Google Scholar 

  57. 57

    Rygel, M. C., Gibling, M. R. & Calder, J. H. Vegetation-induced sedimentary structures from fossil forests in the Pennsylvanian Joggins Formation, Nova Scotia. Sedimentology 51, 531–552 (2004).

    Google Scholar 

  58. 58

    Bashforth, A. R., Drabkova, J., Oplustil, S., Gibling, M. R. & Falcon-Lang, H. J. Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided river plain prone to flood disturbance (Nyrany Member, Central and Western Bohemian Basin, Czech Republic). Rev. Palaeobot. Palynol. 163, 153–189 (2010).

    Google Scholar 

  59. 59

    Clarke, J. T., Warnock, R. C. M. & Donoghue, P. C. J. Establishing a time-scale for plant evolution. New Phytol. 192, 266–301 (2011).

    Google Scholar 

  60. 60

    Gibling, M. R., Nanson, G. G. & Maroulis, J. C. Anastomosing river sedimentation in the Channel Country of central Australia. Sedimentology 45, 595–619 (1998).

    Google Scholar 

  61. 61

    Tooth, S. & Nanson, G. C. The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern plains, arid central Australia. Hydrol. Process. 14, 3099–3117 (2000).

    Google Scholar 

  62. 62

    Tooth, S., Jansen, J. D., Nanson, G. C., Coulthard, T. J. & Pietsch, T. Riparian vegetation and the late Holocene development of an anabranching river: Magela Creek, northern Australia. Geol. Soc. Am. Bull. 120, 1021–1035 (2008).

    Google Scholar 

  63. 63

    Harwood, K. & Brown, A. G. Changing in-channel and overbank flood velocity distributions and the morphology of forested multiple channel (anastomosing) systems. Earth Surf. Proc. Land. 18, 741–748 (1993).

    Google Scholar 

  64. 64

    Rodrigues, S., Bréhéret, J.-G., Macaire, J.-J., Greulich, S. & Villar, M. In-channel woody vegetation controls on sedimentary processes and the sedimentary record within alluvial environments: a modern example of an anabranch of the River Loire, France. Sedimentology 54, 223–242 (2007).

    Google Scholar 

  65. 65

    Abernethy, B. & Rutherfurd, I. D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Proc. Land. 25, 921–937 (2000).

    Google Scholar 

  66. 66

    Dupuy, L., Fourcaud, T. & Stokes, A. A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278, 119–134 (2005).

    Google Scholar 

  67. 67

    Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69, 197–205 (2007).

    Google Scholar 

  68. 68

    Hales, T. C., Ford, C. R., Hwang, T., Vose, J. M. & Band, L. E. Topographic and ecologic controls on root reinforcement. J. Geophys. Res. 114, F03013 (2009).

    Google Scholar 

  69. 69

    Abbe, T. B. & Montgomery, D. R. Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology 51, 81–107 (2003).

    Google Scholar 

  70. 70

    Webb, A. A. & Erskine, W. D. Distribution, recruitment, and geomorphic significance of large woody debris in an alluvial forest stream: Tonghi Creek, southeastern Australia. Geomorphology 51, 109–126 (2003).

    Google Scholar 

  71. 71

    Francis, R. A., Petts, G. E. & Gurnell, A. M. Wood as a driver of landscape change along river corridors. Earth Surf. Proc. Land. 33, 1622–1626 (2008).

    Google Scholar 

  72. 72

    Francis, R. A., Corenblit, D. & Edwards, P. J. Perspectives on biogeomorphology, ecosystem engineering and self-organisation in island-braided fluvial ecosystems. Aquat. Sci. 71, 290–304 (2009).

    Google Scholar 

  73. 73

    Nanson, G. C., Barbetti, M. & Taylor, G. River stabilisation due to changing climate and vegetation during the late Quaternary in western Tasmania, Australia. Geomorphology 13, 145–158 (1995).

    Google Scholar 

  74. 74

    Brooks, A. P., Brierley, G. J. & Millar, R. G. The long-term control of vegetation and woody debris on channel and flood-plain evolution: insights from a paired catchment study in southeastern Australia. Geomorphology 51, 7–29 (2003).

    Google Scholar 

  75. 75

    Brown, A. G. Learning from the past: palaeohydrology and palaeoecology. Freshwater Biol. 47, 817–829 (2002).

    Google Scholar 

  76. 76

    Davies, N. S. & Sambrook Smith, G. Signatures of quaternary fluvial response, Upper River Trent, Staffordshire, UK: A synthesis of outcrop, documentary, and GPR data. Z. Geomorphol. 50, 347–374 (2006).

    Google Scholar 

  77. 77

    Gran, K. & Paola, C. Riparian vegetation controls on braided stream dynamics. Water Resour. Res. 37, 3275–3283 (2001).

    Google Scholar 

  78. 78

    Murray, A. B. & Paola, C. Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf. Proc. Land. 28, 131–143 (2003).

    Google Scholar 

  79. 79

    Coulthard, T. J. Effects of vegetation on braided stream pattern and dynamics. Water Resour. Res. 41, W04003 (2005).

    Google Scholar 

  80. 80

    Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    Google Scholar 

  81. 81

    Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl Acad. Sci. USA 106, 16936–16941 (2009).

    Google Scholar 

  82. 82

    Perona, P. et al. Biomass selection by floods and related timescales: Part 1. Experimental observations. Adv. Water Resour. http://dx.doi.org/10.1016/j.advwatres.2011.09.016 (2011).

  83. 83

    Edmaier, K., Burlando, P. & Perona, P. Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. Hydrol. Earth Syst. Sci. 15, 1615–1627 (2011).

    Google Scholar 

  84. 84

    Corenblit, D. & Steiger, J. Vegetation as a major conductor of geomorphic changes on the Earth surface: toward evolutionary geomorphology. Earth Surf. Proc. Land. 34, 891–896 (2009).

    Google Scholar 

  85. 85

    Buatois, L. A. et al. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20, 321–347 (2005).

    Google Scholar 

  86. 86

    Brasier, A. T. Searching for travertines, calcretes and speleothems in deep time: Processes, appearances, predictions and the impact of plants. Earth Sci. Rev. 104, 213–239 (2011).

    Google Scholar 

  87. 87

    Naiman, R. J., Bilby, R. E. & Bisson, P. A. Riparian ecology and management in the Pacific coastal rain forest. BioSciences 50, 996–1011 (2000).

    Google Scholar 

  88. 88

    MacNaughton, R. B. et al. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30, 391–394 (2002).

    Google Scholar 

  89. 89

    Davies, N. S., Gibling, M. R. & Rygel, M. C. Marine influence in the Juniata Formation (Upper Ordovician, Potters Mills, Pennsylvania): Implications for the history of life on land. Palaios 25, 527–539 (2011).

    Google Scholar 

  90. 90

    Buatois, L. A., Mangano, M. G., Genise, J. F. & Taylor, T. N. The ichnologic record of the continental invertebrate invasion: Evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios 13, 217–240 (1998).

    Google Scholar 

  91. 91

    Buatois, L. A. & Mangano, M. G. in Trace Fossils Concepts, Problems, Prospects (ed. Miller, W. I.) 285–323 (Elsevier, 2007).

    Google Scholar 

  92. 92

    Labandeira, C. The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods. Insect Sci. 14, 259–275 (2007).

    Google Scholar 

  93. 93

    Boucot, A. J. & Janis, C. Environment of the early Paleozoic vertebrates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 41, 251–287 (1983).

    Google Scholar 

  94. 94

    Niedzwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian period from Poland. Nature 463, 43–48 (2010).

    Google Scholar 

  95. 95

    Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 13, 141–145 (1998).

    Google Scholar 

  96. 96

    Cascales-Miñana, B. New insights into the reading of Paleozoic plant fossil record discontinuities. Hist. Biol. 23, 115–130 (2011).

    Google Scholar 

  97. 97

    Cascales-Miñana, B. & Cleal, C. J. Plant fossil record and survival analyses. Lethaia 45, 71–82 (2011).

    Google Scholar 

  98. 98

    Labandeira, C. C., Beall, B. S. & Hueber, F. M. Early insect diversification: Evidence from a Lower Devonian bristletail from Quebec. Science 242, 913–916 (1988).

    Google Scholar 

  99. 99

    Labandeira, C. C. Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends Ecol. Evol. 20, 253–262 (2005).

    Google Scholar 

  100. 100

    Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W. & Lourens, L. J. A new geologic time scale with special reference to Precambrian and Neogene. Episodes 27, 83–100 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank many colleagues for discussion and assistance, especially A. Bashforth, W. DiMichele, R. Dott, H. Falcon-Lang, R. Gastaldo, P. Gensel, M. Rygel, W. Stein and P. Perona. Funding was provided from a Discovery Grant to M.R.G. from the Natural Sciences and Engineering Research Council of Canada.

Author information

Affiliations

Authors

Contributions

M.R.G. and N.S.D. jointly conceived and undertook the study and fieldwork involved. Both authors contributed to the writing of the manuscript and figure construction.

Corresponding author

Correspondence to Martin R. Gibling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gibling, M., Davies, N. Palaeozoic landscapes shaped by plant evolution. Nature Geosci 5, 99–105 (2012). https://doi.org/10.1038/ngeo1376

Download citation

Further reading

Search

Quick links