Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two boundary layers in Titan’s lower troposphere inferred from a climate model

Abstract

Saturn’s moon Titan has a dense atmosphere, but its thermal structure is poorly known. Conflicting information has been gathered on the nature, extent and evolution of Titan’s planetary boundary layer—the layer of the atmosphere that is influenced by the surface—from radio-occultation observations by the Voyager 1 spacecraft1 and the Cassini orbiter2, measurements by the Huygens probe3,4,5 and by dune-spacing analyses6. Specifically, initial analyses of the Huygens data suggested a boundary layer of 300 m depth with no diurnal evolution4, incompatible with alternative estimates of 2–3 km (refs 1, 2, 6). Here we use a three-dimensional general circulation model7, albeit not explicitly simulating the methane cycle, to analyse the dynamics leading to the thermal profile of Titan’s lowermost atmosphere. In our simulations, a convective boundary layer develops in the course of the day, rising to an altitude of 800 m. In addition, a seasonal boundary of 2 km depth is produced by the reversal of the Hadley cell at the equinox, with a dramatic impact on atmospheric circulation. We interpret fog that had been discovered at Titan’s south pole earlier8 as boundary layer clouds. We conclude that Titan’s troposphere is well structured, featuring two boundary layers that control wind patterns, dune spacing and cloud formation at low altitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal structure of the first kilometres at the Huygens landing site, measured by the Huygens Atmospheric Structure Instrument and simulated by the GCM.
Figure 2: Simulated diurnal evolution of dry convection in the first kilometre during one typical Titan day at the Huygens site.
Figure 3: Simulated averaged potential-temperature profiles giving the seasonal evolution of the thermal structure for the first kilometres.

Similar content being viewed by others

References

  1. Lindal, G. F. et al. The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. Icarus 53, 348–363 (1983).

    Article  Google Scholar 

  2. Schinder, P. J. et al. The structure of Titan’s atmosphere from Cassini radio occultations. Icarus 215, 460–474 (2011).

    Article  Google Scholar 

  3. Fulchignoni, M. et al. In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 1–7 (2005).

    Article  Google Scholar 

  4. Tokano, T., Ferri, F., Colombatti, G., Mäkinen, T. & Fulchignoni, M. Titan’s planetary boundary layer structure at the Huygens landing site. J. Geophys. Res. 111, E08007 (2006).

    Article  Google Scholar 

  5. Griffith, C. A., McKay, C. P. & Ferri, F. Titan’s tropical storms in an evolving atmosphere. Astrophys. J. Lett. 687, L41–L44 (2008).

    Article  Google Scholar 

  6. Lorenz, R. D., Claudin, P., Andreotti, B., Radebaugh, J. & Tokano, T. A 3 km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data. Icarus 205, 719–721 (2010).

    Article  Google Scholar 

  7. Lebonnois, S., Burgalat, J., Rannou, P. & Charnay, B. Titan Global Climate Model: A new 3-dimensional version of the IPSL Titan GCM. Icarus http://dx.doi.org/10.1016/j.icarus.2011.11.032 (2011).

  8. Brown, M. E., Smith, A. L., Chen, C. & Ádámkovics, M. Discovery of fog at the South Pole of Titan. Astrophys. J. Lett. 706, L110–L113 (2009).

    Article  Google Scholar 

  9. Parlange, M. B., Eichinger, W. E. & Albertson, J. D. Regional scale evaporation and the atmospheric boundary layer. Rev. Geophys. 33, 99–124 (1995).

    Article  Google Scholar 

  10. Niemann, H. B. et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 1–6 (2005).

    Article  Google Scholar 

  11. Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

    Article  Google Scholar 

  12. Andreotti, B., Fourriere, A., Ould-Kaddour, F., Murray, B. & Claudin, P. Size of giant aeolian dunes limited by the average depth of the atmospheric boundary layer. Nature 457, 1120–1123 (2009).

    Article  Google Scholar 

  13. Tokano, T., Neubauer, F. M., Laube, M. & McKay, C. P. Seasonal variation of Titan’s atmospheric structure simulated by a general circulation model. Planet. Space Sci. 47, 493–520 (1999).

    Article  Google Scholar 

  14. Cottini, V. et al. Spatial and temporal variations in Titan’s surface temperatures from Cassini CIRS observations. Planet. Space Sci. http://dx.doi.org/10.1016/j.pss.2011.03.015 (2011).

  15. Jennings, D. E. et al. Titan’s hydrogen torus. Astrophys. J. 246, 344–353 (1981).

    Article  Google Scholar 

  16. Friedson, A. J., West, R. A., Wilson, E. H., Oyafuso, F. & Orton, G. S. A global climate model of Titan’s atmosphere and surface. Planet. Space Sci. 57, 1931–1949 (2009).

    Article  Google Scholar 

  17. Mitchell, J. L. The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. 113, E08015 (2008).

    Google Scholar 

  18. Tokano, T. The dynamics of Titan’s troposphere. Phil. Trans. R. Soc. A 367, 633–648 (2009).

    Article  Google Scholar 

  19. Tokano, T. Relevance of fast westerlies at equinox for eastward elongation of Titan’s dunes. Aeolian Res. 2, 113–127 (2010).

    Article  Google Scholar 

  20. Turtle, E. P. et al. Rapid and extensive surface changes near Titan’s equator: Evidence of April showers. Science 331, 1414–1417 (2011).

    Article  Google Scholar 

  21. Mitchell, J. L., Adamkovics, M., Caballero, R. & Turtle, E. P. The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere. Nature Geosci. 4, 589–592 (2011).

    Article  Google Scholar 

  22. Rodriguez, S. et al. Global circulation as the main source of cloud activity on Titan. Nature 459, 678–682 (2009).

    Article  Google Scholar 

  23. Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006).

    Article  Google Scholar 

  24. Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. & Caballero, R. The dynamics behind Titan’s methane cloud. Proc. Natl Acad. Sci. USA 103, 18421–18426 (2006).

    Article  Google Scholar 

  25. Hourdin, F. et al. Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117, 358–374 (1995).

    Article  Google Scholar 

  26. Hourdin, F. et al. The LMDZ4 general circulation model: Climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim. Dynam. 27, 787–813 (2006).

    Article  Google Scholar 

  27. McKay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titan’s atmosphere. Icarus 80, 23–53 (1989).

    Article  Google Scholar 

  28. Rannou, P., Hourdin, F., McKay, C. P. & Luz, D. A coupled dynamics–microphysics model of Titan’s atmosphere. Icarus 170, 443–462 (2004).

    Article  Google Scholar 

  29. Hourdin, F., Couvreux, F. & Menut, L. Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci. 59, 1105–1123 (2002).

    Article  Google Scholar 

  30. Crespin, A. et al. Diagnostics of Titan’s stratospheric dynamics using Cassini/CIRS data and the IPSL General Circulation Model. Icarus 197, 556–571 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Forget and R. Wordworth for advice and corrections to the paper. We thank N. Rochetin for discussions of the terrestrial climate. This study was supported by an Agence Nationale de la Recherche grant.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and B.C. developed this version of the model. B.C. ran and analysed simulations. B.C. and S.L. wrote the manuscript.

Corresponding author

Correspondence to Benjamin Charnay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 684 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charnay, B., Lebonnois, S. Two boundary layers in Titan’s lower troposphere inferred from a climate model. Nature Geosci 5, 106–109 (2012). https://doi.org/10.1038/ngeo1374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing