Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aerosol-induced intensification of rain from the tropics to the mid-latitudes

Abstract

Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. However, the influence of aerosols on clouds, and in particular on precipitation, is far from understood1, and seems to depend on factors such as location, season2 and the spatiotemporal scale of the analysis. Here, we examine the relationship between aerosol abundance and rain rate—a key factor in climate and hydrological processes—using rain data from a satellite-based instrument sensitive to stronger rain rates (Tropical Rainfall Measuring Mission3, TRMM), aerosol and cloud property data from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite4,5 and meteorological information from the Global Data Assimilation System6. We show that for a range of conditions, increases in aerosol abundance are associated with the local intensification of rain rates detected by the TRMM. The relationship is apparent over both the ocean and land, and in the tropics, subtropics and mid-latitudes. Further work is needed to determine how aerosols influence weaker rain rates, not picked up in the analysis. We also find that increases in aerosol levels are associated with a rise in cloud-top height. We suggest that the invigoration of clouds and the intensification of rain rates is a preferred response to an increase in aerosol concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 13:30 local-time map of rain rate (R) and the observed trend with aerosol loading in four selected regions.
Figure 2: Maps and histograms of the differences in R for the polluted minus the clean sets.
Figure 3: Limiting the meteorological variance.

Similar content being viewed by others

References

  1. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  2. Khain, A. P. Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett. 4, 015004 (2009).

    Article  Google Scholar 

  3. Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  4. Platnick, S. et al. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sensing 41, 459–473 (2003).

    Article  Google Scholar 

  5. Remer, L. A. et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 113, D14S07 (2008).

    Article  Google Scholar 

  6. Parrish, D. F. & Derber, J. C. The National-Meteorological-Centers spectral statistical-interpolation analysis system. Mon. Weath. Rev. 120, 1747–1763 (1992).

    Article  Google Scholar 

  7. Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Article  Google Scholar 

  8. Koren, I., Martins, J. V., Remer, L. A. & Afargan, H. Smoke invigoration versus inhibition of clouds over the Amazon. Science 321, 946–949 (2008).

    Article  Google Scholar 

  9. Albrecht, B. A. Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227–1230 (1989).

    Article  Google Scholar 

  10. Rosenfeld, D. Flood or drought: How do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article  Google Scholar 

  11. Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 46, 607–613 (2009).

    Article  Google Scholar 

  12. L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M. & Takemura, T. Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res. 114, D09211 (2009).

    Google Scholar 

  13. Levin, Z. & Cotton, W. R. Aerosol Pollution Impact on Precipitation: A Scientific Review (Springer, 2009).

    Book  Google Scholar 

  14. Teller, A. & Levin, Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys. 6, 67–80 (2006).

    Article  Google Scholar 

  15. Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793–1796 (2000).

    Article  Google Scholar 

  16. Huang, J., Zhang, C. & Prospero, J. M. Large-scale effect of aerosols on precipitation in the West African Monsoon region. Q. J. R. Meteorol. Soc. 135, 581–594 (2009).

    Article  Google Scholar 

  17. Jiang, J. H. et al. Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America. Geophys. Res. Lett. 35, L14804 (2008).

    Article  Google Scholar 

  18. Jones, T. A. & Christopher, S. A. Statistical properties of aerosol-cloud-precipitation interactions in South America. Atmos. Chem. Phys. 10, 2287–2305 (2010).

    Article  Google Scholar 

  19. Lin, J. C., Matsui, T., Pielke, R. A. Sr & Kummerow, C. Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res. 111, D19204 (2006).

    Article  Google Scholar 

  20. Martins, J. A., Silva Dias, M. A. F. & Gonçalves, F. L. T. Impact of biomass burning aerosols on precipitation in the Amazon: A modelling case study. J. Geophys. Res. 114, D02207 (2009).

    Article  Google Scholar 

  21. Tao, W-K. et al. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res. 112, D24S18 (2007).

    Article  Google Scholar 

  22. Andreae, M. O. Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys. 9, 543–556 (2009).

    Article  Google Scholar 

  23. Koren, I., Feingold, G. & Remer, L. A. The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 10, 8855–8872 (2010).

    Article  Google Scholar 

  24. Andreae, M. O. Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004).

    Article  Google Scholar 

  25. Khain, A. P., BenMoshe, N. & Pokrovsky, A. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 65, 1721–1748 (2008).

    Article  Google Scholar 

  26. Lindsey, D. T. & Fromm, M. Evidence of the cloud lifetime effect from wildfire-induced thunderstorms. Geophys. Res. Lett. 35, L22809 (2008).

    Article  Google Scholar 

  27. Lee, S. S., Donner, L. J. & Penner, J. E. Thunderstorm and stratocumulus: How does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys. 10, 6819–6837 (2010).

    Article  Google Scholar 

  28. van den Heever, S. C. & Cotton, W. R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Clim. 46, 828–850 (2007).

    Article  Google Scholar 

  29. Gagin, A., Rosenfeld, D. & López, R. E. The relationship between height and precipitation characteristics of summertime convective cells in south Florida. J. Atmos. Sci. 42, 84–94 (1985).

    Article  Google Scholar 

  30. Rosenfeld, D. & Ulbrich, C. W. Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorol. Monogr. 30, 237–237 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Israel Science Foundation (grant # 1172/10) and the Minerva Foundation (780048). G.F. acknowledges support from NOAA’s Climate Goal Program.

Author information

Authors and Affiliations

Authors

Contributions

I.K. carried out the analysis and wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Ilan Koren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koren, I., Altaratz, O., Remer, L. et al. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nature Geosci 5, 118–122 (2012). https://doi.org/10.1038/ngeo1364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing