Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume

Abstract

Linear chains of volcanic ocean islands are one of the most distinctive features on our planet. The longest, the Hawaiian–Emperor Chain, has been active for more than 80 million years, and is thought to have formed as the Pacific Plate moved across the Hawaiian mantle plume, the hottest and most productive of Earth's plumes. Volcanoes fed by the plume today form two adjacent trends, including Mauna Kea and Mauna Loa, that exhibit strikingly different geochemical characteristics. An extensive data set of isotopic analyses shows that lavas with these distinct characteristics have erupted in parallel along the Kea and Loa trends for at least 5 million years. Seismological data suggest that the Hawaiian mantle plume, when projected into the deep mantle, overlies the boundary between typical Pacific lower mantle and a sharply defined layer of apparently different material. This layer exhibits low seismic shear velocities and occurs on the Loa side of the plume. We conclude that the geochemical differences between the Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material. Similar indications of preferential sampling at the limit of a large anomalous low-velocity zone are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. We infer that the anomalous low-velocity zones at the core–mantle boundary are storing geochemical anomalies that are enriched in recycled material and sampled by strong mantle plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key bathymetric and isotopic features of the Hawaiian Islands.
Figure 2: Isotopic data for Hawaiian shield lavas.
Figure 3: Mauna Loa flows and southwest submarine rift zone.
Figure 4: Temporal evolution of isotopic compositions from Hawaiian volcanoes.
Figure 5: Deep mantle velocity anomalies and hotspot locations.

Similar content being viewed by others

References

  1. Davies, G. F. Role of the lithosphere in mantle convection. J. Geophys. Res. 93, 10451–10466 (1988).

    Google Scholar 

  2. Sleep, N. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Google Scholar 

  3. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: Plume heads and tails. Science 246, 103–107 (1989).

    Google Scholar 

  4. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Google Scholar 

  5. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Google Scholar 

  6. Jellinek, A. & Manga, M. Links between long-lived hot spots, mantle plumes, D” and plate tectonics. Rev. Geophys. 42, RG3002 (2004).

    Google Scholar 

  7. DePaolo, D. J. & Weis, D. in Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future (eds Harms, U., Koeberl, C. & Zoback, M. D.), Springer, pp. 259–288 (2007).

    Google Scholar 

  8. Tatsumoto, M. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett. 38, 63–87 (1978).

    Google Scholar 

  9. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Google Scholar 

  10. Sun, S. & McDonough, W. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

    Google Scholar 

  11. Hofmann, A. W. in The Mantle and the Core (ed. Carlson, R. W.), Treatise of Geochemistry Vol. 2 (eds. Holland H. D. & Turekian K. K.), 61–101 (Elsevier–Pergamon, 2003).

    Google Scholar 

  12. White, W. Oceanic island basalts and mantle plumes: the geochemical perspective. Annu. Rev. Earth Planet. Sci. 38, 133–160 (2010).

    Google Scholar 

  13. White, W. M. Sources of oceanic basalts — radiogenic isotopic evidence. Geology 13, 115–118 (1985).

    Google Scholar 

  14. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450, 866–869 (2007).

    Google Scholar 

  15. Carlson, R. W., Boyet, M. Composition of the Earth's interior: the importance of early events. Phil. Trans. R. Soc. A 366, 4077–4103 (2008).

    Google Scholar 

  16. van Keken, P., Hauri, E. H. & Ballentine, C. J. Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002).

    Google Scholar 

  17. Albarède, F. & van der Hilst, R. Zoned mantle convection. Phil. Trans. R. Soc. A 360, 2569–2592 (2002).

    Google Scholar 

  18. Willbold, M. & Stracke, A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).

    Google Scholar 

  19. Willbold, M. & Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276, 188–197 (2010).

    Google Scholar 

  20. Wilson, J. T. Evidence from islands on the spreading of the ocean floor. Can. J. Phys. 41, 863–868 (1963).

    Google Scholar 

  21. Ribe, N. & Christensen, U. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Google Scholar 

  22. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).

    Google Scholar 

  23. Lenardic, A. & Jellinek, A. M. Tails of two plume types in one mantle. Geology 37, 127–130 (2009).

    Google Scholar 

  24. Richards, M. A. & Griffiths, R. W. Deflection of plumes by mantle shear flow: experimental results and a simple theory. Geophys. J. 94, 367–376 (1988).

    Google Scholar 

  25. DePaolo, D. J., Bryce, J., Dodson, A., Shuster, D. & Kennedy, B. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem. Geophys. Geosyst. 2, 1044 (2001).

    Google Scholar 

  26. Kerr, R. & Mériaux, C. Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, Q12009 (2004).

    Google Scholar 

  27. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Google Scholar 

  28. Ren, Z., Ingle, S., Takahashi, E., Hirano, N. & Hirata, T. The chemical structure of the Hawaiian mantle plume. Nature 436, 837–840 (2005).

    Google Scholar 

  29. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of the Hawaiian plume. Earth Planet. Sci. Lett. 295, 231–240 (2010).

    Google Scholar 

  30. Sharp, W. & Renne, P. The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii. Geochem. Geophys. Geosyst. 6, Q04G17 (2005).

    Google Scholar 

  31. Stolper, E. M., DePaolo, D. J. & Thomas, D. M. Deep drilling into a mantle plume volcano: the Hawaii Scientific Drilling Project. Scient. Drilling 7, 4–14 (2009).

    Google Scholar 

  32. Clague D. A., Dalrymple G. B. The Hawaiian–Emperor volcanic chain Part 1. Geologic evolution. USGS Prof. Pap. 1350, 5–54 (1987).

    Google Scholar 

  33. Garcia, M. O., Caplan-Auerbach, J., De Carlo, E. H., Kurz. M. D. & Becker, N., Geology, geochemistry and earthquake history of Loihi seamount, Hawaii's youngest volcano. Chem. Erde 66, 81–108 (2006).

    Google Scholar 

  34. Blichert-Toft, J., Weis, D., Maerschalk, C., Agranier, A. & Albarède, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosyst. 4, 8704 (2003).

    Google Scholar 

  35. Eisele, J., Abouchami, W., Galer, S. J. G. & Hofmann, A. W. The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem. Geophys. Geosyst. 4, 8710 (2003).

    Google Scholar 

  36. Kurz, M., Curtice, J., Lott, D. & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, Q04G14 (2004).

    Google Scholar 

  37. Rhodes, J. M. & Vollinger, M. J. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types, Geochem. Geophys. Geosyst. 5, Q03G13 (2004).

    Google Scholar 

  38. Bryce, J., DePaolo, D. J. & Lassiter, J. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosyst. 6, Q09G18 (2005).

    Google Scholar 

  39. Dana, D. J. Geology, Report of the United States Exploring Expedition, 1838–1842, Vol. 10 (C. Sherman, Philadelphia, 1849).

    Google Scholar 

  40. Jackson, E. D., Shaw, H. R. & Bargar, K. E. Calculated geochronology and stress field orientations along the Hawaiian chain. Earth Planet. Sci. Lett. 26, 145–155 (1975).

    Google Scholar 

  41. Lassiter, J., DePaolo, D. J. & Tatsumoto, M. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11769–11780 (1996).

    Google Scholar 

  42. Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem. Geol. 169, 187–209 (2000).

    Google Scholar 

  43. Clague, D. A. Hawaiian alkaline volcanism. Geol. Soc. London Spec. Pub. 30, 227–252 (1987).

    Google Scholar 

  44. Ren, Z.-Y., Tomoyuki, S., Masako, Y., Johnson, K. M. & Takahashi, E. Isotope compositions of submarine Hana Ridge lavas, Haleakala volcano, Hawaii: Implications for source compositions melting process and the structure of the Hawaiian plume. J. Petrol. 47, 255–275 (2006).

    Google Scholar 

  45. Marske, J. P., Pietruszka, A. J., Weis, D., Garcia, M. O. & Rhodes, J. M. Rapid passage of a small-scale mantle heterogeneity through the melting regions of Kilauea and Mauna Loa Volcanoes. Earth Planet. Sci. Lett. 259, 34–50 (2007).

    Google Scholar 

  46. Hanano, D., Weis, D., Scoates, J. S., Aciego, S. & DePaolo, D. J. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochem. Geophys. Geosyst. 11, Q01004 (2010).

    Google Scholar 

  47. Xu, G. et al. Geochemical characteristics of West Molokai shield- and postshield-stage lavas: Constraints on Hawaiian plume models. Geochem. Geophys. Geosyst. 8, Q08G21 (2007).

    Google Scholar 

  48. Tanaka, R., Makishima, A. & Nakamura, E. Hawaiian double volcanic chain triggered by an episodic involvement of recycled material: Constraints from temporal Sr-Nd–Hf–Pb isotopic trend of the Loa-type volcanoes. Earth Planet. Sci. Lett. 265, 450–465 (2008).

    Google Scholar 

  49. Robinson, J. & Eakins, B. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge. J. Volcanol. Geotherm. Res. 151, 309–317 (2006).

    Google Scholar 

  50. Garcia, M. O., Hulsebosch, T. P. & Rhodes, J. M. in Mauna Loa Revealed: Structure, Composition, History, and Hazards (eds. Rhodes, J. M. & Lockwood, J. P.), Geophys. Monogr. Ser. 92. American Geophysical Union, Washington, DC, pp. 219–239 (1995).

    Google Scholar 

  51. Jicha, B., Rhodes, J. M., Singer, B. S., Vollinger, M. J., Garcia, M. O. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii. American Geophysical Union, Fall Meeting, abstract #V43F-2328 (2009).

  52. Wanless, V. D. et al. Submarine radial vents on Mauna Loa Volcano, Hawaii. Geochem. Geophys. Geosyst. 7, Q05001 (2006).

    Google Scholar 

  53. Rhodes, J. M. & Hart, S. R. in Mauna Loa Revealed: Structure, Composition, History, and Hazards (eds Rhodes, J. M. & Lockwood, J. P.), Geophys. Monogr. Ser. 92. 263–288 (American Geophysical Union, 1995).

    Google Scholar 

  54. Greene, A. R. et al. Low-productivity Hawaiian volcanism between Kaua'i and O'ahu. Geochem. Geophys. Geosyst. 11, Q0AC08 (2010).

    Google Scholar 

  55. Kimura, J., Sisson, T., Nakano, N., Coombs, M. & Lipman, P. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component. J. Volcanol. Geotherm. Res. 151, 51–72 (2006).

    Google Scholar 

  56. Chen, C., Frey, F. A., Garcia, M. O., Dalrymple, G. & Hart, S. R. The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii. Contrib. Mineral. Petrol. 106, 183–200 (1991).

    Google Scholar 

  57. Gaffney, A., Nelson, B. & Blichert-Toft, J. Geochemical constraints on the role of oceanic lithosphere in intra-volcano heterogeneity at West Maui, Hawaii. J. Petrol. 45, 1663–1687 (2004).

    Google Scholar 

  58. Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).

    Google Scholar 

  59. Garcia, M. O. et al. Petrology, geochemistry and geochronology of Kaua'i lavas over 4.5 Myr: implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51, 1507–1540 (2010).

    Google Scholar 

  60. Garnero, E. J. & McNamara, A. Structure and dynamics of Earth's lower mantle. Science 320, 626–628 (2008).

    Google Scholar 

  61. Thorne, M., Grand, S. & Garnero, E. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 176, 47–63 (2004).

    Google Scholar 

  62. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Google Scholar 

  63. Ritsema, J., van Heijst, H. & Woodhouse, J. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999).

    Google Scholar 

  64. Mégnin, C. & Romanowicz, B. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms. Geophys. J. Int. 143, 709–728 (2000).

    Google Scholar 

  65. To, A., Fukao, Y. & Tsuboi, S. Evidence for a thick and localized ultra low shear velocity zone at the base of the mantle beneath the central Pacific. Phys. Earth Planet. Inter. 184, 119–133 (2011).

    Google Scholar 

  66. Garnero, E. Heterogeneity of the lowermost mantle. Annu. Rev. Earth Planet. Sci. 28, 509–537 (2000).

    Google Scholar 

  67. Ishii, M. & Tromp, J. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science 285, 1231–1236 (1999).

    Google Scholar 

  68. Tarduno, J. et al. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 301, 1064–1069 (2003).

    Google Scholar 

  69. Wolfe, C. J. et al. Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth Planet. Sci. Lett. 303, 267–280 (2011).

    Google Scholar 

  70. Richards, M. A. & Griffiths, R. W. Thermal entrainment by deflected mantle plumes. Nature 342, 900–902 (1989).

    Google Scholar 

  71. Kerr, R. C. & Lister, J. R. Rise and deflection of mantle plume tails. Geochem. Geophys. Geosyst. 9, Q10004 (2008).

    Google Scholar 

  72. Blichert-Toft, J. & Albarède, F. Mixing of isotopic heterogeneities in the Mauna Kea plume conduit. Earth Planet. Sci. Lett. 282, 190–200 (2009).

    Google Scholar 

  73. Blake, S. & Campbell, I. The dynamics of magma-mixing during flow in volcanic conduits. Contrib. Mineral. Petrol. 94, 72–81 (1986).

    Google Scholar 

  74. Lister, J. Long-wavelength instability of a line plume. J. Fluid Mechanics 175, 413–428 (1987).

    Google Scholar 

  75. Cao, Q., der Hilst, van, R., de Hoop, M. & Shim, S. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii. Science 332, 1068–1071 (2011).

    Google Scholar 

  76. Olson, P. & Yuen, D. A. Thermochemical plumes and mantle phase transitions. J. Geophys. Res. 87, 3993–4002 (1982).

    Google Scholar 

  77. Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107, B42078 (2002).

    Google Scholar 

  78. Boschi, L., Becker, T. & Steinberger, B. Mantle plumes: Dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007).

    Google Scholar 

  79. Bercovici, D. & Mahoney, J. Double flood basalts and plume head separation at the 660 kilometer discontinuity. Science 266, 1367–1369 (1994).

    Google Scholar 

  80. Kumagai, I. & Kurita, K. On the fate of mantle plumes at density interfaces. Earth Planet. Sci. Lett. 179, 63–71 (2000).

    Google Scholar 

  81. Lister, J. & Kerr, R. C. The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface. J. Fluid Mechanics 203, 215–249 (1989).

    Google Scholar 

  82. Steinberger, B., Sutherland, R. & O'Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Google Scholar 

  83. Garnero, E., Lay, T. & McNamara, A. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), Geol. Soc. Am. Spec. Paper 430, 79–101 (2007).

    Google Scholar 

  84. Idehara, K. Structural heterogeneity of an ultra-low-velocity zone beneath the Philippine Islands: Implications for core–mantle chemical interactions induced by massive partial melting at the bottom of the mantle. Phys. Earth Planet. Inter. 184, 80–90 (2011).

    Google Scholar 

  85. McNamara, A., Garnero, E. & Rost, S. Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet. Sci. Lett. 299, 1–9 (2010).

    Google Scholar 

  86. Williams, Q., Revenaugh, J. & Garnero, E. A correlation between ultra-low basal velocities in the mantle and hot spots. Science 281, 546–549 (1998).

    Google Scholar 

  87. Rost, S., Garnero, E., Williams, Q. & Manga, M. Seismological constraints on a possible plume root at the core–mantle boundary. Nature 435, 666–669 (2005).

    Google Scholar 

  88. Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature 473, 199–202 (2011).

    Google Scholar 

  89. Hernlund, J. W. & Jellinek, A. M. Dynamics and structure of a stirred partially molten ultralow-velocity zone. Earth Planet. Sci. Lett. 296, 1–8 (2010).

    Google Scholar 

  90. Maclennan, J. Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim. Cosmochim. Acta 72, 4159–4176 (2008).

    Google Scholar 

  91. Hewitt, I. J. Modelling melting rates in upwelling mantle. Earth Planet. Sci. Lett. 300, 264–274 (2010).

    Google Scholar 

  92. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of the mantle, Science 273, 1528–1530 (1996).

    Google Scholar 

  93. Brandon, A. D. & Walker, R. J. The debate over core–mantle interaction. Earth Planet. Sci. Lett. 232, 211–225 (2005).

    Google Scholar 

  94. Murphy, D. T., Brandon, A. D., Debaille, V., Burgess, R. & Ballentine, C. J. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochim. Cosmochim. Acta 74, 738–750 (2010).

    Google Scholar 

  95. Vidal, V. & Bonneville, A. Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J. Geophys. Res. 109, B03104 (2004).

    Google Scholar 

  96. Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci. http://dx.doi.org/10.1038/ngeo1263 (2011).

  97. Weis, D., Bassias, Y., Gautier, I. & Mennessier, J. Dupal anomaly in existence 115 Ma ago — evidence from isotopic study of the Kerguelen Plateau (South Indian Ocean). Geochim. Cosmochim. Acta 53, 2125–2131 (1989).

    Google Scholar 

  98. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. V. Sharp sides to the African super plume. Science 296, 1850–1852 (2002).

    Google Scholar 

  99. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle, Nature 309, 753–757 (1984).

    Google Scholar 

  100. Wen, L. A compositional anomaly at the Earth's core-mantle boundary as an anchor to the relatively slowly moving surface hotspots and as source to the DUPAL anomaly. Earth Planet. Sci. Lett. 246, 138–148 (2006).

    Google Scholar 

  101. Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

    Google Scholar 

  102. US Geological Survey. Bathymetric map of the Hawaiian Islands (2003), available at http://geopubs.wr.usgs.gov/i-map/i2809.

  103. Geochemistry of Rocks of the Oceans and Continents (GEOROC) database, available at http://georoc.mpch-mainz.gwdg.de/georoc/.

  104. Trusdell, F. A. & Lockwood, J. P. Geologic Maps of the Northeast Flank of, Central-Southeast Flank of, Southern Mauna Loa Volcano, Island of Hawai'i, Hawai'i: US Geological Survey SIM 2932-A, SIM 2932-B, SIM 2932-C respectively, scale 1:50,000 (in the press).

  105. Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. A 360, 2475–2491 (2002).

    Google Scholar 

  106. Steinberger, B. Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000).

    Google Scholar 

  107. Bréger, L. & Romanowicz, B. Three-dimensional structure at the base of the mantle beneath the central Pacific. Science 282, 718–720 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank D. DePaolo, A. Hofmann, D. Hanano, A. Greene, I. Nobre Silva, C. Farnetani, F. Albarède and numerous PCIGR graduate students for discussions and insights into mantle geochemistry. We thank C. Maerschalk (ULB), B. Kieffer and J. Barling (PCIGR, UBC) for helping to produce the data. We thank S. Sparks, VGP President, for inviting D.W. to give the Daly Lecture at Fall AGU 2010. Financial support was provided by the Belgian Fonds National de la Recherche Scientifique (FNRS), NSERC Discovery Grants to D.W., J.S.S. and A.M.J., and NSF grants to M.O.G. and J.M.R. A.M.J. also acknowledges support from the Canadian Institute for Advanced Research. Correspondence and requests for materials should be addressed to D.W.

Author information

Authors and Affiliations

Authors

Contributions

D.W. acquired the data, compiled the literature data, conceived the idea for the paper and developed the conceptual model with A.M.J. D.W. wrote the paper, together with A.M.J and J.S.S. All authors discussed the results and the model, and contributed to the manuscript. M.O.G. and J.M.R. also wrote the proposals, led the expeditions and organized the sampling on Hawai'i and shared their knowledge and data on these islands.

Corresponding author

Correspondence to Dominique Weis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weis, D., Garcia, M., Rhodes, J. et al. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geosci 4, 831–838 (2011). https://doi.org/10.1038/ngeo1328

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing