Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex

Abstract

The Bushveld Complex in South Africa represents the world’s largest intrusion of magnesium- and iron-rich magmas. The Bushveld magmas were emplaced beneath the Transvaal basin1 2.06 billion years ago2,3, but their origin remains elusive. The magmas may have formed in response to an upwelling mantle plume4, ancient subduction5 or melting triggered by a meteorite impact6. Here we use U–Pb dating of baddeleyite crystals to date a series of mafic magmatic dykes located east of the Transvaal basin. We find that these dykes formed between 2.70 and 2.66 billion years ago, roughly 600 million years before the Bushveld magmas were emplaced. Collectively, the geometry of the dykes forms a radiating swarm converging towards a focal point in the eastern part of the Bushveld Complex. Such radiating swarms typically record the impact of a mantle plume head that injected large volumes of magma into the crust and at the base of the lithosphere. We propose that subsequent cooling and metamorphism of these mantle-plume-derived rocks caused them to increase in density and sink, triggering subsidence of the Transvaal basin. The dense rocks may later have sunk away into the mantle, with the delamination causing the inflow of hot mantle that initiated production of the voluminous Bushveld magmas about 600 million years after the mantle plume impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geological overview of the Kaapvaal craton.
Figure 2: U–Pb geochronology of mafic dykes.
Figure 3: The origin of the Bushveld Complex.

Similar content being viewed by others

References

  1. Harney, D. M. W. & von Gruenewaldt, G. Ore-forming processes in the upper part of the Bushveld complex, South-Africa. J. Afr. Earth Sci. 20, 77–89 (1995).

    Article  Google Scholar 

  2. Scoates, J. S. & Friedman, R. M. Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U–Pb zircon chemical abrasion ID-TIMS technique. Econ. Geol. 103, 465–471 (2008).

    Article  Google Scholar 

  3. Olsson, J. R., Söderlund, U., Klausen, M. B. & Ernst, R. E. U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambr. Res. 183, 490–500 (2010).

    Article  Google Scholar 

  4. Hatton, C. J. Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. J. Afr. Earth. Sci. 21 (4), 571–577 (1995).

    Article  Google Scholar 

  5. Clarke, B., Uken, R. & Reinhardt, J. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos 111, 21–36 (2009).

    Article  Google Scholar 

  6. Rhodes, R. C. New evidence for impact origin of the Bushveld Complex, South Africa. Geology 3, 549–554 (1975).

    Article  Google Scholar 

  7. de Wit, M. J. et al. Formation of an Archaean continent. Nature 357, 553–562 (1992).

    Article  Google Scholar 

  8. Cawthorn, R. G. & Walraven, F. Emplacement and crystallization time for the Bushveld Complex. J. Petrol. 39, 1669–1687 (1998).

    Article  Google Scholar 

  9. Lee, C. A. in Layered Intrusions (ed. Cawthorn, R.G) 103–145 (Elsevier, 1996).

    Book  Google Scholar 

  10. Harris, C., Pronost, J. J. M., Ashwal, L. D. & Cawthorn, R. G. Oxygen and hydrogen isotope stratigraphy of the Rustenburg layered suite, Bushveld Complex: Constraints on crustal contamination. J. Petrol. 46, 579–601 (2005).

    Article  Google Scholar 

  11. Richardson, S. H. & Shirey, S. B. Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453, 910–913 (2008).

    Article  Google Scholar 

  12. James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Kaapvaal Seismic Group, Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001).

    Article  Google Scholar 

  13. Carlson, R. W. et al. Continental growth, preservation and modification in southern Africa. GSA Today 10, 1–7 (2001).

    Google Scholar 

  14. Letts, S., Torsvik, T. H., Webb, S. J. & Ashwal, L. D. Palaeomagnetism of the 2054 Ma Bushveld Complex (South Africa): Implications for emplacement and cooling. Geophys. J. Int. 179, 850–872 (2009).

    Article  Google Scholar 

  15. Barnes, S. J. Are Bushveld U-type parent magmas boninites or contaminated komatiites? Contrib. Mineral. Petrol. 101, 447–457 (1989).

    Article  Google Scholar 

  16. Uken, R. & Watkeys, M. K. An interpretation of mafic dyke swarms and their relationship with major mafic magmatic events on the Kaapvaal Craton and Limpopo Belt. South Afr. J. Geol. 100, 341–348 (1997).

    Google Scholar 

  17. Elkins-Tanton, L. T. Continental magmatism caused by lithospheric delamination. Spec. Pap. Geol. Soc. Am. 388, 449–461 (2005).

    Google Scholar 

  18. Willmore, C. C., Boudreau, A. E., Spivack, A. & Kruger, F. J. Halogens of Bushveld Complex, South Africa: δ37 Cl and Cl/F evidence for hydration melting of the source region in a back-arc setting. Chem. Geol. 182, 503–511 (2002).

    Article  Google Scholar 

  19. Harmer, R. E. & von Gruenewaldt, G. A review of magmatism associated with the Transvaal Basin — implications for its tectonic setting. South Afr. J. Geol. 94, 104–122 (1991).

    Google Scholar 

  20. Buchanan, P. C. & Reimold, W. U. Studies of the Rooiberg group, Bushveld Complex, South Africa: No evidence for an impact origin. Earth Planet. Sci. Lett. 155, 149–165 (1998).

    Article  Google Scholar 

  21. Ernst, R. E. & Buchan, K. L. in Mantle Plumes: Their Identification Through Time Vol. 352 (eds Ernst, R. E. & Buchan, K. L.) 247–265 (Geological Society of America Special Paper, 2001).

    Book  Google Scholar 

  22. Eriksson, P. G., Altermann, W., Catuneanu, O., van der Merwe, R. & Bumby, A. J. Major influences on the evolution of the 2.67—2.1 Ga Transvaal basin, Kaapvaal craton. Sedim. Geol. 141–142, 205–231 (2001).

    Article  Google Scholar 

  23. Klausen, M. B. et al. Petrological discrimination among dated Precambrian dyke swarms, Eastern Kaapvaal craton (South Africa). Precambr. Res. 183, 501–522 (2010).

    Article  Google Scholar 

  24. Lubnina, N., Ernst, R. E., Klausen, M. B. & Söderlund, U. Paleomagnetic study of Neoarchean-Paleoproterozoic dykes in the Kaapvaal Craton. Precambr. Res. 183, 523–552 (2010).

    Article  Google Scholar 

  25. McCarthy, T. S, McCallum, K., Myers, R. E. & Linton, P. Stress states along the northern margin of the Witwatersrand Basin during Klipriviersberg Group volcanism. South Afr. J. Geol. 93, 245–260 (1990).

    Google Scholar 

  26. Wright, C. Station corrections for the Kaapvaal seismic network: Statistical properties and relation to lithospheric structure. Phys. Earth Planet. Inter. 167, 39–52 (2008).

    Article  Google Scholar 

  27. Kaminski, E. & Jaupart, C. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America. Earth Planet. Sci. Lett. 178, 139–149 (2000).

    Article  Google Scholar 

  28. Mapeo, R. B. M., Armstrong, R. A. & Kampunzu, A. B. SHRIMP U–Pb zircon geochronology of gneisses from the Gweta borehole, northeast Botswana: Implications for the Palaeoproterozoic Magondi Belt in southern Africa. Geol. Mag. 138, 299–308 (2001).

    Article  Google Scholar 

  29. Holzer, L., Frei, R., Barton, J. M. & Kramers, J. D. Unravelling the record of successive high-grade events in the Central Zone of the Limpopo Belt using single phase dating of metamorphic minerals. Precambr. Res. 87, 87–115 (1999).

    Article  Google Scholar 

  30. Elkins-Tanton, L. T. & Hager, B. H. Melt intrusion as trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophys. Res. Lett. 27 (23), 3937–3940 (2000).

    Article  Google Scholar 

  31. Webb, S. J., Ashwal, L. D. & Cawthorn, R. G. Continuity between eastern and western Bushveld Complex, South Africa, confirmed by xenoliths from kimberlites. Contrib. Mineral. Petrol. 162, 101–107 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Crafoord Foundation and the Swedish Research Council via grants to U.S. We thank W. L. Griffin for constructive comments that improved the manuscript. Thanks to D. Conley at Lund University for commenting on the manuscript and linguistic help. J.R.O. thanks the laboratory staff at the Jack Satterly Geochronology Laboratory for assistance during his visit in 2009.

Author information

Authors and Affiliations

Authors

Contributions

M.B.K. and U.S. initiated the study and sampled the targeted dolerite dykes. J.R.O. processed the dyke samples and extracted the baddeleyite separates. M.A.H. and J.R.O. performed the U–Pb ID-TIMS analyses at the Jack Satterly Geochronology Laboratory, University of Toronto. G.R.H. provided important re-interpretations of published seismic data. J.R.O. and U.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Johan R. Olsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, J., Söderlund, U., Hamilton, M. et al. A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex. Nature Geosci 4, 865–869 (2011). https://doi.org/10.1038/ngeo1308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing