Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mississippi Delta subsidence primarily caused by compaction of Holocene strata

Abstract

Coastal subsidence causes sea-level rise, shoreline erosion and wetland loss, which poses a threat to coastal populations1. This is especially evident in the Mississippi Delta in the southern United States, which was devastated by Hurricane Katrina in 2005. The loss of protective wetlands is considered a critical factor in the extensive flood damage. The causes of subsidence in coastal Louisiana, attributed to factors as diverse as shallow compaction and deep crustal processes, remain controversial2,3,4,5,6,7,8,9,10,11. Current estimates of subsidence rates vary by several orders of magnitude3,6. Here, we use a series of radiocarbon-dated sediment cores from the Mississippi Delta to analyse late Holocene deposits and assess compaction rates. We find that millennial-scale compaction rates primarily associated with peat can reach 5 mm per year, values that exceed recent model predictions5,9. Locally and on timescales of decades to centuries, rates are likely to be 10 mm or more per year. We conclude that compaction of Holocene strata contributes significantly to the exceptionally high rates of relative sea-level rise and coastal wetland loss in the Mississippi Delta, and is likely to cause subsidence in other organic-rich and often densely populated coastal plains.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Map of the study area.
Figure 2: Cross-section perpendicular to Bayou Lafourche near Paincourtville, Louisiana.
Figure 3: Relationship between overburden thickness and compaction rate.
Figure 4: Comparison of compaction-prone and compaction-free 14C samples.

References

  1. Jelgersma, S. in Sea-Level Rise and Coastal Subsidence. Causes, Consequences, and Strategies (eds Milliman, J. D. & Haq, B. U.) 47–62 (Kluwer, Dordrecht, 1996).

    Book  Google Scholar 

  2. Morton, R. A., Bernier, J. C. & Barras, J. A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 50, 261–274 (2006).

    Article  Google Scholar 

  3. Dokka, R. K. Modern-day tectonic subsidence in coastal Louisiana. Geology 34, 281–284 (2006).

    Article  Google Scholar 

  4. Dixon, T. H. et al. Subsidence and flooding in New Orleans. Nature 441, 587–588 (2006).

    Article  Google Scholar 

  5. Meckel, T. A., Ten Brink, U. S. & Williams, S. J. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys. Res. Lett. 33, L11403 (2006).

    Article  Google Scholar 

  6. Törnqvist, T. E., Bick, S. J., Van der Borg, K. & De Jong, A. F. M. How stable is the Mississippi Delta? Geology 34, 697–700 (2006).

    Article  Google Scholar 

  7. González, J. L. & Törnqvist, T. E. Coastal Louisiana in crisis: Subsidence or sea level rise? Eos 87, 493–498 (2006).

    Article  Google Scholar 

  8. Dokka, R. K., Sella, G. F. & Dixon, T. H. Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophys. Res. Lett. 33, L23308 (2006).

    Article  Google Scholar 

  9. Meckel, T. A., Ten Brink, U. S. & Williams, S. J. Sediment compaction rates and subsidence in deltaic plains: Numerical constraints and stratigraphic influences. Basin Res. 19, 19–31 (2007).

    Article  Google Scholar 

  10. Chan, A. W. & Zoback, M. D. The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone. J. Coast. Res. 23, 771–786 (2007).

    Article  Google Scholar 

  11. Ivins, E. R., Dokka, R. K. & Blom, R. G. Post-glacial sediment load and subsidence in coastal Louisiana. Geophys. Res. Lett. 34, L16303 (2007).

    Article  Google Scholar 

  12. Kaye, C. A. & Barghoorn, E. S. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geol. Soc. Am. Bull. 75, 63–80 (1964).

    Article  Google Scholar 

  13. Bloom, A. L. Peat accumulation and compaction in a Connecticut coastal marsh. J. Sedim. Petrol. 34, 599–603 (1964).

    Google Scholar 

  14. Nadon, G. C. Magnitude and timing of peat-to-coal compaction. Geology 26, 727–730 (1998).

    Article  Google Scholar 

  15. Pizzuto, J. E. & Schwendt, A. E. Mathematical modeling of autocompaction of a Holocene transgressive valley-fill deposit, Wolfe Glade, Delaware. Geology 25, 57–60 (1997).

    Article  Google Scholar 

  16. Allen, J. R. L. Geological impacts on coastal wetland landscapes: Some general effects of sediment autocompaction in the Holocene of northwest Europe. Holocene 9, 1–12 (1999).

    Article  Google Scholar 

  17. Long, A. J., Waller, M. P. & Stupples, P. Driving mechanisms of coastal change: Peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol. 225, 63–84 (2005).

    Article  Google Scholar 

  18. Cahoon, D. R., Reed, D. J. & Day, J. W. Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 128, 1–9 (1995).

    Article  Google Scholar 

  19. Penland, S. & Ramsey, K. E. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. J. Coast. Res. 6, 323–342 (1990).

    Google Scholar 

  20. Kulp, M. A. Holocene Stratigraphy, History, and Subsidence of the Mississippi River Delta Region, North-Central Gulf of Mexico. Thesis, Univ. Kentucky (2000).

  21. Törnqvist, T. E. et al. A revised chronology for Mississippi River subdeltas. Science 273, 1693–1696 (1996).

    Article  Google Scholar 

  22. Törnqvist, T. E. & Van Dijk, G. J. Optimizing sampling strategy for radiocarbon dating of Holocene fluvial systems in a vertically aggrading setting. Boreas 22, 129–145 (1993).

    Article  Google Scholar 

  23. Cohen, K. M. in River Deltas—Concepts, Models, and Examples (eds Giosan, L. & Bhattacharya, J. P.) 341–364 (SEPM (Soc. Sedim. Geol.), Tulsa, Spec. Publ., Vol. 83, 2005).

  24. Mesri, G., Stark, T. D., Ajlouni, M. A. & Chen, C. S. Secondary compression of peat with or without surcharging. J. Geotech. Geoenviron. Engrg. 123, 411–421 (1997).

    Article  Google Scholar 

  25. Filgueira-Rivera, M., Smith, N. D. & Slingerland, R. L. Controls on natural levée development in the Columbia River, British Columbia, Canada. Sedimentology 54, 905–919 (2007).

    Article  Google Scholar 

  26. McFarlan, E. Jr. Radiocarbon dating of late Quaternary deposits, south Louisiana. Geol. Soc. Am. Bull. 72, 129–158 (1961).

    Article  Google Scholar 

  27. Coleman, J. M. Deltas. Processes of Deposition and Models for Exploration (Burgess, Minneapolis, 1981).

    Google Scholar 

  28. De Groot, Th. A. M. & De Gans, W. Facies variations and sea-level-rise response in the lowermost Rhine/Meuse area during the last 15000 years (the Netherlands). Meded. Rijks Geol. Dienst 57, 229–250 (1996).

    Google Scholar 

  29. Day, J. W. Jr et al. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 315, 1679–1684 (2007).

    Article  Google Scholar 

  30. Törnqvist, T. E. et al. Comment on “Wetland sedimentation from Hurricanes Katrina and Rita”. Science 316, 201b (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This analysis is based mainly on field data collected from 1993 to 1995, supported by grant 770-07-238 from the Netherlands Organisation for Scientific Research (NWO). Further funding was provided by NOAA and USGS to the Long-term Estuary Assessment Group through the Center for Bioenvironmental Research at Tulane and Xavier Universities, and by the Koninklijke/Shell Exploratie en Produktie Laboratorium. We benefited greatly from comments by T. Meckel. This paper is dedicated to the late Henk Berendsen, whose deep understanding of alluvial stratigraphy has had a profound impact on the work presented here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Torbjörn E. Törnqvist, Davin J. Wallace, Joep E. A. Storms, Jakob Wallinga, Remke L. van Dam, Martijn Blaauw, Mayke S. Derksen, Cornelis J. W. Klerks, Camiel Meijneken or Els M. A. Snijders.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Törnqvist, T., Wallace, D., Storms, J. et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geosci 1, 173–176 (2008). https://doi.org/10.1038/ngeo129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo129

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing