Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change

Abstract

Anthropogenic emissions of carbon dioxide and other greenhouse gases have driven and will continue to drive widespread climate change at the Earth's surface. But surface climate change is not limited to the effects of increasing atmospheric greenhouse gas concentrations. Anthropogenic emissions of ozone-depleting gases also lead to marked changes in surface climate, through the radiative and dynamical effects of the Antarctic ozone hole. The influence of the Antarctic ozone hole on surface climate is most pronounced during the austral summer season and strongly resembles the most prominent pattern of large-scale Southern Hemisphere climate variability, the Southern Annular Mode. The influence of the ozone hole on the Southern Annular Mode has led to a range of significant summertime surface climate changes not only over Antarctica and the Southern Ocean, but also over New Zealand, Patagonia and southern regions of Australia. Surface climate change as far equatorward as the subtropical Southern Hemisphere may have also been affected by the ozone hole. Over the next few decades, recovery of the ozone hole and increases in greenhouse gases are expected to have significant but opposing effects on the Southern Annular Mode and its attendant climate impacts during summer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signature of the ozone hole in observed and simulated changes in the Southern Hemisphere polar circulation.
Figure 2: Signature of the ozone hole in observed and simulated changes in the austral summertime circulation.
Figure 3: Time series of the southern annular mode from transient experiments forced with time-varying ozone-depleting substances and greenhouse gases.
Figure 4: Signature of the SAM in austral summertime climate variability.
Figure 5: Schematic response of the ocean to the high-index polarity of the southern annular mode.

Similar content being viewed by others

References

  1. World Meteorological Organization Scientific Assessment of Ozone Depletion: 2010 Global Ozone Research and Monitoring Project Report No. 52 (WMO, 2011).

  2. Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    Google Scholar 

  3. Randel, W. J. & Wu, F. Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion. J. Clim. 12, 1467–1479 (1999).

    Google Scholar 

  4. Waugh, D. W., Randel, W. J. & Pawson, S. Persistence of the lower stratospheric polar vortices. J. Geophys. Res. 104, 27191–27202 (1999).

    Google Scholar 

  5. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  6. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Google Scholar 

  7. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 244, 581–584 (2001).

    Google Scholar 

  8. Graversen, R. G. & Christiansen, B. Downward propagation from the stratosphere to the troposphere: A comparison of the two hemispheres. J. Geophys. Res. 108, 4780 (2003).

    Google Scholar 

  9. Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).

    Google Scholar 

  10. Karoly, D. J. The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus 42A, 41–50 (1990).

    Google Scholar 

  11. Hartmann, D. L. & Lo, F. Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci. 55, 1303–1315 (1998).

    Google Scholar 

  12. Limpasuvan, V. & Hartmann, D. L. Wave-maintained annular modes of climate variability. J. Clim. 13, 4414–4429 (2000).

    Google Scholar 

  13. Lorenz, D. J. & Hartmann, D. L. Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci. 58, 3312–3327 (2001).

    Google Scholar 

  14. Barnes, E. A. & Hartmann, D. L. Dynamical feedbacks of the Southern Annular Mode in winter and summer. J. Atmos. Sci. 67, 2320–2330 (2010).

    Google Scholar 

  15. Fogt, R. L. et al. Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J. Clim. 22, 5346–5365 (2009).

    Google Scholar 

  16. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Google Scholar 

  17. Marshall, G. J. Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol. 27, 373–383 (2007).

    Google Scholar 

  18. Polvani, L. M. & Kushner, P. J. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett. 29, (2002).

  19. Kushner, P. J. & Polvani, L. M. Stratosphere-troposphere coupling in a relatively simple AGCM: The role of eddies. J. Clim. 17, 629–639 (2004).

    Google Scholar 

  20. Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Google Scholar 

  21. Miller, R. L., Schmidt, G. A. & Shindell, D. T. Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res. 111, D18101 (2006).

    Google Scholar 

  22. Cai, W. & Cowan, T. Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Clim. 20, 681–693 (2007).

    Google Scholar 

  23. Karpechko, A., Gillett, N. P., Marshall, G. J. & Scaife, A. A. Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models. Geophys. Res. Lett. 35, L20806 (2008).

    Google Scholar 

  24. Son, S-W. et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. 115, D00M07 (2010).

    Google Scholar 

  25. Son, S-W., Tandon, N. F., Polvani, L. M. & Waugh, D. W. Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett. 36, L15705 (2009).

    Google Scholar 

  26. Son, S-W. et al. The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320, 1486–1489 (2008).

    Google Scholar 

  27. Sigmond, M., Reader, M. C., Fyfe, J. C. & Gillett, N. P. Drivers of past and future Southern Ocean change: stratospheric ozone verses greenhouse gas impacts. Geophys. Res. Lett. 38, L12601 (2011).

    Google Scholar 

  28. McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion: Part 2. Southern Hemisphere troposphere. J. Clim. 24, 1850–1868 (2011).

    Google Scholar 

  29. Sexton, D. M. H. The effect of stratospheric ozone depletion on the phase of the Antarctic Oscillation. Geophys. Res. Lett. 28, 3697–3700 (2001).

    Google Scholar 

  30. Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    Google Scholar 

  31. Shindell, D. & Schmidt, G. A. Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett. 31, L18209 (2004).

    Google Scholar 

  32. Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 19, 2896–2905 (2006).

    Google Scholar 

  33. Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S-W. Stratospheric ozone depletion: The main driver of 20th century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).

    Google Scholar 

  34. Sigmond, M., Fyfe, J. C. & Scinocca, J. F. Does the ocean impact the atmospheric response to stratospheric ozone depletion? Geophys. Res. Lett. 37, L12706 (2010).

    Google Scholar 

  35. Held, I. M. The macroturbulence of the troposphere. Tellus 51A-B, 59–70 (1999).

    Google Scholar 

  36. Grise, K. M., Thompson, D. W. J. & Forster, P. M. On the role of radiative processes in stratosphere–troposphere coupling. J. Clim. 22, 4154–4161 (2009).

    Google Scholar 

  37. Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J. & Shine, K. P. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–680 (1991).

    Google Scholar 

  38. Song, Y. & Robinson, W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 61, 1711–1725 (2004).

    Google Scholar 

  39. Thompson, D. W. J., Furtado, J. C. & Shepherd, T. G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci. 63, 2616–2629 (2006).

    Google Scholar 

  40. Wittman, M. A. H., Charlton, A. J. & Polvani, L. M. The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci. 64, 479–496 (2007).

    Google Scholar 

  41. Simpson, I. R., Blackburn, M. & Haigh, J. D. The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci. 66, 1347–1365 (2009).

    Google Scholar 

  42. Chen, G. & Held, I. Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett. 34, L21805 (2007).

    Google Scholar 

  43. Kidston, J., Vallis, G. K., Dean, S. M. & Renwick, J. A. Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Clim. 24, 3764–3780 (2011).

    Google Scholar 

  44. Robinson, W. A. A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci. 57, 415–422 (2000).

    Google Scholar 

  45. Marshall, G. J., Orr, A., van Lipzig, N. P. M. & King, J. C. The impact of a changing Southern Hemisphere Annular Mode on Antarctic peninsula summer temperatures. J. Clim. 19, 5388–5404 (2006).

    Google Scholar 

  46. Van den Broeke, M. R. & van Lipzig, N. P. M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 39, 199–126 (2004).

    Google Scholar 

  47. Renwick, J. A. & Thompson, D. W. J. The Southern Annular Mode and New Zealand climate. Water Atmos. 14, 24–25 (2006).

    Google Scholar 

  48. Griffiths, G. M. Changes in New Zealand daily rainfall extremes 1930–2004. Weather and Climate 26, 3–46 (2006).

    Google Scholar 

  49. Ummenhofer, C. C., Sen Gupta, A. & England, M. H. Causes of late twentieth-century trends in New Zealand precipitation. J. Climate, 22, 3–19 (2009).

    Google Scholar 

  50. Hendon, H. H., Thompson, D. W. J. & Wheeler, M. C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere Annular Mode. J. Clim. 20, 2452–2467 (2007).

    Google Scholar 

  51. Meneghini, B., Simmonds, I. & Smith, I. N. Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol. 27, 109–121 (2007).

    Google Scholar 

  52. Oke, P. R. & England, M. H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004).

    Google Scholar 

  53. Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, L06701 (2006).

    Google Scholar 

  54. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The role of poleward-intensifying winds on Southern Ocean warming. J. Clim. 20, 5391–5400 (2007).

    Google Scholar 

  55. Hall, A. & Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. J. Clim. 15, 3043–3057 (2002).

    Google Scholar 

  56. Sen Gupta, A. & England, M. H. Coupled ocean-atmosphere-ice response to variations in the Southern Annular Mode. J. Clim. 19, 4457–4486 (2006).

    Google Scholar 

  57. Hallberg, R. & Gnanadesikan, A. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Ocean. 36, 2232–2252 (2006).

    Google Scholar 

  58. Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1, 864–869 (2008).

    Google Scholar 

  59. Screen, J. A., Gillett, N. P., Stevens, D. P., Marshall, G. J. & Roscoe, H. K. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Clim. 22, 806–818 (2009).

    Google Scholar 

  60. Hogg, A., Meredith, M., Blundell, J. & Wilson, C. Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Clim. 21, 608–620 (2008).

    Google Scholar 

  61. Salleé, J. B., Speer, K. & Morrow, R. Response of the Antarctic Circumpolar Current to atmospheric variability. J. Clim. 21, 3020–3039 (2008).

    Google Scholar 

  62. Spence, P., Fyfe, J. C., Montenegro, A. & Weaver, A. J. Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Clim. 23, 5332–5343 (2010).

    Google Scholar 

  63. Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M. & Zeng, F. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40, 1539–1557 (2010).

    Google Scholar 

  64. Farneti, R. & Delworth, T. L. The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr. 40, 2348–2354 (2010).

    Google Scholar 

  65. Gent, P. R. & Danabasoglu, G. Response to increasing Southern Hemisphere winds in CCSM4. J. Clim. 24, 4992–4998 (2011).

    Google Scholar 

  66. Verdy, A., Marshall, J. & Czaja, A. Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 36, 1317–1331 (2006).

    Google Scholar 

  67. Ciasto, L. M. & Thompson, D. W. J. Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Clim. 21, 1244–1259 (2008).

    Google Scholar 

  68. Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    Google Scholar 

  69. Chapman, W. L. & Walsh, J. E. A synthesis of Antarctic temperatures. J. Climate, 20, 4096–4117 (2007).

    Google Scholar 

  70. Monaghan, A. J., Bromwich, D. H., Chapman, W. & Comiso, J. C. Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res. 113, D04105 (2008).

    Google Scholar 

  71. Zazulie, N., Rusticucci, M. & Solomon, S. Changes in climate at high southern latitudes: A unique daily record at Orcadas spanning 1903–2008 J. Clim. 23, 189–196 (2010).

    Google Scholar 

  72. Steig, E. J. et al. Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Google Scholar 

  73. Schneider, D. P., Deser, C. & Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dyn. http://dx.doi.org/10.1007/s00382-010-0985-x (in the press).

  74. Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).

    Google Scholar 

  75. Gille, S. T. Warming of the Southern Ocean since the 1950s. Science 295, 1275–1277 (2002).

    Google Scholar 

  76. Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    Google Scholar 

  77. Fyfe, J. C. Southern Ocean warming due to human influence. Geophys. Res. Lett. 33, L19701 (2006).

    Google Scholar 

  78. Aoki, S., Yoritaka, M. & Masuyama, A. Multidecadal warming of subsurface temperature in the Indian sector of the Southern Ocean. J. Geophys Res. 108, 8081 (2003).

    Google Scholar 

  79. Sprintall, J. Long-term trends and interannual variability of temperature in Drake Passage. Prog. Ocean. 77, 316–330 (2008).

    Google Scholar 

  80. Roemmich, D. et al. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Ocean. 37, 162–173 (2007).

    Google Scholar 

  81. Sokolov, S. & Rintoul, S. R. The circumpolar structure and distribution of the Antarctic Circumpolar Current fronts. Part 2: Variability and relationship to sea surface height. J. Geophys. Res. 114, C11019 (2009).

    Google Scholar 

  82. Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, L11603 (2005).

    Google Scholar 

  83. Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Google Scholar 

  84. Lenton, A. et al. Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett. 36, L12606 (2009).

    Google Scholar 

  85. Butler, A. H., Thompson, D. W. J. & Gurney, K. R. Observed relationships between the Southern Annular Mode and atmospheric carbon dioxide. Global Biogeochem. Cycles 21, GB4014 (2007).

    Google Scholar 

  86. Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A. & Schauer, B. Summer and winter air–sea CO2 fluxes in the Southern Ocean. Deep-Sea Res. I 53, 1548–1563 (2006).

    Google Scholar 

  87. Ito, T., Woloszyn, M. & Mazloff, M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463, 80–83 (2010).

    Google Scholar 

  88. Korhonen, H. et al. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys. Res. Lett. 37, L02805 (2010).

    Google Scholar 

  89. Lefebvre, W., Goosse, H., Timmermann, R. & Fichefet, T. Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res. 109, C09005 (2004).

    Google Scholar 

  90. Renwick, J. A. Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Clim. 15, 3058–3068 (2002).

    Google Scholar 

  91. Turner, J. et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36, L08502 (2009).

    Google Scholar 

  92. Goosse, H., Lefebvre, W., de Montety, A., Crespin, E. & Orsi, A. H. Consistent past half-century trends in the atmosphere, the sea ice & the ocean at high southern latitudes. Clim. Dyn. 33, 999–1016 (2009).

    Google Scholar 

  93. Sigmond, M. & Fyfe., J. C. Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett. 37, L18502 (2010).

    Google Scholar 

  94. Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar ozone depletion on subtropical precipitation. Science 332, 951–954 (2011).

    Google Scholar 

  95. Gerber, E. P., Polvani, L. M. & Ancukiewicz, D. Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett. 35, L22707 (2008).

    Google Scholar 

  96. Ring, M. J. & Plumb, R. A. The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci. 65, 3880–3898 (2008).

    Google Scholar 

  97. Fyfe, J. C., Boer, G. J. & Flato, G. M. The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys. Res. Lett. 26, 1601–1604 (1999).

    Google Scholar 

  98. Perlwitz, J., Pawson, S., Fogt, R. L., Nielsen, J. E. & Neff, W. D. Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett. 35, L08714 (2008).

    Google Scholar 

  99. Kushner, P., Held, I. M. & Delworth, T. L. Southern Hemisphere atmospheric circulation response to global warming. J. Clim. 14, 2238–2249 (2001).

    Google Scholar 

  100. Cai, W., Whetton, P. & Karoly, D. The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2 . J. Clim. 16, 1525–1538 (2003).

    Google Scholar 

  101. Brandefelt, J. & Kallen, E. The response of the Southern Hemisphere atmospheric circulation to an enhanced greenhouse gas forcing. J. Clim. 17, 4425–4442 (2004).

    Google Scholar 

  102. Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Google Scholar 

  103. Lu, J., Chen, G. & Frierson, D. Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Clim. 21, 5835–5851 (2008).

    Google Scholar 

  104. Arblaster, J. M., Meehl, G. A. & Karoly, D. J. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 38, L02701 (2011).

    Google Scholar 

  105. Polvani, L. M., Previdi, M. & Deser, C. Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett. 38, L04707 (2011).

    Google Scholar 

  106. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 111, D12106 (2006).

    Google Scholar 

  107. Jones, D. A., Wang, W. & Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 58, 233–248 (2009).

    Google Scholar 

  108. Meredith, M. P. & Hogg, A. M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett. 33, L16608 (2006).

    Google Scholar 

  109. Morrow, R., Ward, M. L., Hogg, A. M. & Pasquet, S. Eddy response to Southern Ocean climate modes. J. Geophys. Res. 115, C10030 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank N. Gillett, L. Polvani and C. McLandress for providing the model output shown in Figs 1, 2 and 3 (as noted in the figure legends); A. Santoso for generating Fig. 3; L. Ciasto for generating the results shown in Fig. 4b; J. Renwick for providing the New Zealand temperature and precipitation data used in Fig. 4c, d; C. Ummenhofer for assistance with the data for Fig. 4e; and A. Sen Gupta for generating Fig. 5. Thanks also to J. Arblaster, J. Fyfe, N. Gillett, I. Held, H. Hendon, A. Hogg, C. Le Quéré, C. McLandress, L. Polvani, J. Renwick, S-W. Son and S. Rintoul for discussions and comments on the manuscript. D.W.J.T. is funded by the National Science Foundation Climate Dynamics program and appreciates sabbatical funding provided by the Climate Change Research Centre at UNSW, where much of the text was written. D.J.K. is supported by the Australian Research Council through the Discovery Projects funding scheme (Project FF0668679). M.H.E. is supported by the Australian Research Council through the Laureate Fellowships funding scheme (Project FL100100214). P.J.K. acknowledges support of the Canadian Foundation for Climate and Atmospheric Sciences and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. J. Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, D., Solomon, S., Kushner, P. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci 4, 741–749 (2011). https://doi.org/10.1038/ngeo1296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing