Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Significant contribution of the 18.6 year tidal cycle to regional coastal changes

Abstract

Although rising global sea levels will affect the shape of coastlines over the coming decades1,2, the most severe and catastrophic shoreline changes occur as a consequence of local and regional-scale processes. Changes in sediment supply3 and deltaic subsidence4,5, both natural or anthropogenic, and the occurrences of tropical cyclones4,5 and tsunamis6 have been shown to be the leading controls on coastal erosion. Here, we use satellite images of South American mangrove-colonized mud banks collected over the past twenty years to reconstruct changes in the extent of the shoreline between the Amazon and Orinoco rivers. The observed timing of the redistribution of sediment and migration of the mud banks along the 1,500 km muddy coast suggests the dominant control of ocean forcing by the 18.6 year nodal tidal cycle7. Other factors affecting sea level such as global warming or El Niño and La Niña events show only secondary influences on the recorded changes. In the coming decade, the 18.6 year cycle will result in an increase of mean high water levels of 6 cm along the coast of French Guiana, which will lead to a 90 m shoreline retreat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatio-temporal fluctuations of the shoreline and of the tide levels in French Guiana.
Figure 2: Measured and estimated shoreline fluctuations along the Guyanas coast.
Figure 3: Predicted shifting of the MHWL under the 18.6 year nodal cycle for the next decade.

Similar content being viewed by others

References

  1. Pilkey, O. H. & Cooper, J. A. G. Society and sea level rise. Science 303, 1781–1782 (2004).

    Article  Google Scholar 

  2. Zhang, K. Q., Douglas, B. C. & Leatherman, S. P. Global warming and coastal erosion. Clim. Change 64, 41–58 (2004).

    Article  Google Scholar 

  3. Syvitski, J. P. M., Vorosmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Article  Google Scholar 

  4. Dixon, T. H. et al. Subsidence and flooding in New Orleans. Nature 441, 587–588 (2006).

    Article  Google Scholar 

  5. Ericson, J. P., Vorosmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 50, 63–82 (2006).

    Article  Google Scholar 

  6. Borrero, J. C. Field data and satellite imagery of tsunami effects in Banda Aceh. Science 308, 1596 (2005).

    Article  Google Scholar 

  7. Wells, J. T. & Coleman, J. M. Periodic mudflat progradation, northeastern coast of South America; a hypothesis. J. Sedim. Petrol. 51, 1069–1075 (1981).

    Article  Google Scholar 

  8. Pugh, D. T. Tides, Surges and Mean Sea-Level (Wiley, Chichester, 1987).

    Google Scholar 

  9. Marchuk, G. I. & Kagan, B. A. Dynamics of Ocean Tides (Kluwer, Dordrecht, 1989).

    Book  Google Scholar 

  10. Eisma, D., Augustinus, P. & Alexander, C. Recent and subrecent changes in the dispersal of Amazon mud. Neth. J. Sea Res. 28, 181–192 (1991).

    Article  Google Scholar 

  11. Meade, R. H., Dunne, T., Richey, J. E., Santos, U. M. & Salati, E. Storage and remobilisation of suspended sediment in the lower Amazon River of Brazil. Science 228, 488–490 (1985).

    Article  Google Scholar 

  12. Baltzer, F., Allison, M. & Fromard, F. Material exchange between the continental shelf and mangrove-fringed coasts with special reference to the Amazon–Guianas coast. Mar. Geol. 208, 115–126 (2004).

    Article  Google Scholar 

  13. Blasco, F., Saenger, P. & Janodet, E. Mangroves as indicators of coastal change. Catena 27, 167–178 (1996).

    Article  Google Scholar 

  14. Allison, M. A. & Lee, M. T. Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Mar. Geol. 208, 169–190 (2004).

    Article  Google Scholar 

  15. Gardel, A. & Gratiot, N. A satellite image-based method for estimating rates of mud bank migration, French Guiana, South America. J. Coast. Res. 21, 720–728 (2005).

    Article  Google Scholar 

  16. Lefebvre, J. P., Dolique, F. & Gratiot, N. Geomorphic evolution of a coastal mudflat under oceanic influences: an example from the dynamic shoreline of French Guiana. Mar. Geol. 208, 191–205 (2004).

    Article  Google Scholar 

  17. Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar. Geol. 208, 265–280 (2004).

    Article  Google Scholar 

  18. Plaziat, J. C. & Augustinus, P. Evolution of progradation/erosion along the French Guiana mangrove coast: A comparison of mapped shorelines since the 18th century with Holocene data. Mar. Geol. 208, 127–143 (2004).

    Article  Google Scholar 

  19. Augustinus, P. G. E. F. The Changing Shoreline of Surinam (South America). Thesis, Univ. Utrecht (1978).

  20. Choubert, B. & Boyé, M. Envasements et désenvasements du littoral en Guyane française. C. R. Acad. Sci. 249, 145–147 (1959).

    Google Scholar 

  21. Kineke, G. C. Fluid Muds on the Amazon Continental Shelf. Thesis, Univ. Washington, Seattle (1993).

  22. Gibbs, R. J. Amazon River sediment transport in Atlantic Ocean. Geology 4, 45–48 (1976).

    Article  Google Scholar 

  23. Guyot, J. L., Filizola, N. & Laraque, A. Sediment Budgets 347–356 (IAHS Publ. 291, IAHS, Iguacu, 2005).

    Google Scholar 

  24. Allison, M. A., Lee, M. T., Ogston, A. S. & Aller, R. C. Origin of Amazon mudbanks along the northeastern coast of South America. Mar. Geol. 163, 241–256 (2000).

    Article  Google Scholar 

  25. Gaucherel, C. A study of the possible extended influence of the ENSO phenomenon. Comptes Rendus Geosci. 336, 175–185 (2004).

    Article  Google Scholar 

  26. Hammond, D. S. & ter Steege, H. Propensity for fire in Guianan rainforests. Conservation Biol. 12, 944–947 (1998).

    Article  Google Scholar 

  27. Mol, J. H., Resida, D., Ramlal, J. S. & Becker, C. R. Effects of El Nino-related drought on freshwater and brackish-water fishes in Suriname, South America. Environ. Biol. Fish. 59, 429–440 (2000).

    Article  Google Scholar 

  28. Anthony, E. J., Gardel, A., Dolique, F. & Guiral, D. Short-term changes in the plan shape of a sandy beach in response to sheltering by a nearshore mud bank, Cayenne, French Guiana. Earth Surf. Process. Land. 27, 857–866 (2002).

    Article  Google Scholar 

  29. Simon, B. La Marée Océanique Côtière (Institut Océanographique, Paris, 2007).

    Google Scholar 

Download references

Acknowledgements

We wish to thank M. Nourtier, B. Simon and J. L. Guyot. This work has the financial support of the Programme National Environnement Côtier, of the Research Council of the Université du Littoral Côte d’Opale and of the Centre National des Etudes Spatiales and the Ecolab Association. Sea-level fluctuations were extracted from http://las.aviso.oceanobs.com/las/servlets/dataset merged product. ASAR/ENVISAT data are provided by ESA 2006, source SEAS-Guyane.

Author information

Authors and Affiliations

Authors

Contributions

N.G. led the project on the basis of a hypothesis initially proposed by J.T.W; N.G., A.G., C.P., E.J.A. and N.G. analysed the remote sensing data and the shoreline dynamics; C.G. provided insights concerning regional El Niño and La Niña dynamics; N.G., E.J.A. & J.T.W. wrote the paper.

Corresponding author

Correspondence to N. Gratiot.

Supplementary information

Supplementary Information

Supplementary Figures S1-3 and table S1 (PDF 688 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratiot, N., Anthony, E., Gardel, A. et al. Significant contribution of the 18.6 year tidal cycle to regional coastal changes. Nature Geosci 1, 169–172 (2008). https://doi.org/10.1038/ngeo127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing