Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The methane cycle on Titan

An Erratum to this article was published on 07 April 2008

Abstract

Saturn's moon Titan is the second largest natural satellite in the solar system, and the only one that possesses a substantial atmosphere. With a surface temperature of 93.7 K at the equator, Titan's water is almost completely frozen out of the atmosphere; water ice comprises between 35% and 45% of the mass of Titan depending on the interior model. But methane seems to play many of the roles on Titan that water does on Earth: clouds have been observed, fluvial and dendritic features have been imaged suggesting episodic heavy rainfall, and there is compelling but circumstantial evidence for near-polar lakes or seas of methane and its atmospheric photochemical product, ethane. However, whereas Earth possesses a massive global ocean of water, Titan lacks a global methane ocean, and on Titan, low-latitude rainfall appears to be an occasional process limited by the small amount of available solar energy compared with that of Earth. Titan is therefore distinct from the Earth, but is also different from Venus in retaining an active cycle of precipitation and evaporation, and from Mars in the preponderance of active fluvial and pluvial processes in the present day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature versus altitude is shown for Titan's atmosphere.
Figure 2: The Cassini RADAR shows details of dendritic channels in high northern latitudes.
Figure 3: A schematic view of the methane cycle on Titan is shown with rough timescales for the various processes.

Similar content being viewed by others

References

  1. Lebreton, J.-P. et al. An overview of the descent and landing of the Huygens probe on Titan. Nature 438, 758–764 (2005).

    Article  Google Scholar 

  2. Niemann, H. B. et al. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005).

    Article  Google Scholar 

  3. Tyler, G. L. et al. Radio science investigation of the Saturn System with Voyager 1: preliminary results. Science 212, 201–206 (1981).

    Article  Google Scholar 

  4. Fulchignoni, M. et al. Titan's physical characteristics measured by the Huygens Atmospheric structure instrument (HASI). Nature 438, 785–791 (2005).

    Article  Google Scholar 

  5. Atreya, S. K. et al. Titan's methane cycle. Planet.Space Sci. 54, 1177–1187 (2006).

    Article  Google Scholar 

  6. Tokano, T. et al. Methane drizzle on Titan. Nature 442, 432–435 (2006).

    Article  Google Scholar 

  7. Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765–778 (2005).

    Article  Google Scholar 

  8. Roe, H. G., Brown, M. E., Schaller, E. L., Bouchez, A. H. & Trujillo, C. A. Geographic control of Titan's mid-latitude clouds. Science 310, 477–479 (2005).

    Article  Google Scholar 

  9. Griffith, C. et al. The evolution of Titan's mid-latitude clouds. Science 310, 474–476 (2005).

    Article  Google Scholar 

  10. Griffith, C. A. Hall, J. L. & Geballe, T. R. Detection of daily clouds on Titan. Science 290, 509–513 (2000).

    Article  Google Scholar 

  11. Porco, C. C. et al. Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005).

    Article  Google Scholar 

  12. Schaller, E. L. et al. Dissipation of Titan's south polar clouds. Icarus 184, 517–523 (2006).

    Article  Google Scholar 

  13. Griffith, C. A. et al. Evidence for a polar ethane cloud on Titan. Science 313, 1620–1622 (2006).

    Article  Google Scholar 

  14. Hueso, R. & Sanchez-Lavega, A. Methane storms on Saturn's moon Titan. Nature 442, 428–431 (2006).

    Article  Google Scholar 

  15. Yung, Y. L., Allen, M. A. & Pinto, J. P. Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. S. 55, 465–506 (1984).

    Article  Google Scholar 

  16. Atreya, S. K. Atmospheres and Ionospheres of the Outer Planets and Satellites. (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  17. Waite, J. H. et al. The process of tholin formation in Titan's atmosphere. Science 316, 870–872 (2007).

    Article  Google Scholar 

  18. Wilson, E. H. & Atreya, S. K. Current state of modelling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 (2004).

    Article  Google Scholar 

  19. Lunine, J. I., Stevenson, D. J. & Yung, Y. L. Ethane ocean on Titan. Science 222, 1229–1230 (1983).

    Article  Google Scholar 

  20. Coustenis, A. et al. The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189, 35–62 (2007).

    Article  Google Scholar 

  21. Dubouloz, N., Raulin, F., Lellouch, E. & Gautier, D. Titan's hypothesized ocean properties — The influence of surface temperature and atmospheric composition uncertainties. Icarus 82, 81–96 (1989).

    Article  Google Scholar 

  22. West, R., Brown, M. E., Salinas, S. V., Bouchez, A. H. & Roe, H. G. No oceans on Titan from the absence of a near-infrared specular reflection. Nature 436, 670–672 (2005).

    Article  Google Scholar 

  23. Stofan, E. R. et al. The lakes of Titan. Nature 445, 61–64 (2007).

    Article  Google Scholar 

  24. Elachi, C. et al. Cassini radar views the surface of Titan. Science 308, 970–974 (2005).

    Article  Google Scholar 

  25. Whiffen, D. H. Measurements on the absorption of microwaves. Part IV.— Non-polar liquids. Trans. Faraday Soc. 46, 124–130 (1950).

    Article  Google Scholar 

  26. Lellouch, E., Schmitt, B., Coustenis, A., Cuby, J.-G. Titan's 5-micron lightcurve. Icarus 168, 209–214 (2003).

    Article  Google Scholar 

  27. Rannou, P. Montmessin, F. Hourdin, F., Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006).

    Article  Google Scholar 

  28. Mitri, G., Showman, A. P., Lunine, J. I. & Lorenz, R. D. Hydrocarbon lakes on Titan. Icarus 186, 385–394 (2007).

    Article  Google Scholar 

  29. Kirk, R. et al. in AGU Fall Meeting abstract P22B-01 (AGU, Washington DC, San Francisco, 2007).

    Google Scholar 

  30. Lorenz, R. D. Fluvial Channels on Titan: Initial Cassini Radar Observations. Planet. Space Sci. (in the press).

  31. Soderblom, L. et al. Topography and Geomorphology of the Huygens landing site on Titan. Planet. Space Sci. 55, 2015–2044 (2007).

    Article  Google Scholar 

  32. Lorenz, R. D. Griffith, C., Lunine, J. I., McKay, C. P. & Renno, N. O. Convective plumes and the scarcity of Titan's clouds. Geophys. Res. Lett. 32, L01201 (2005).

    Google Scholar 

  33. Lorenz, R. D. Niemann, H. B., Harpold, D. N., Way, S. H. & Zarnecki, J. C. Titan's damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteorit. Planet. Sci. 41, 1705–1714 (2006).

    Article  Google Scholar 

  34. Lunine, J. I. and Stevenson, D. J. Formation of the Galilean satellites in a gaseous nebula. Icarus 52, 14–39 (1982).

    Article  Google Scholar 

  35. Hersant, F., Gautier, D., Tobie, G. & Lunine, J. I. Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. (submitted).

  36. McCord, T. et al. Titan's surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus (in the press).

  37. Osegovich, J. P. & Max, M. D. Compound clathrate hydrate on Titan's surface. J. Geophys. Res. 110, E08005 (2005).

    Google Scholar 

  38. Fortes, A. D. & Stofan, E. in 36th Lunar Planet. Sci. Conference Abstract 1123 (Lunar and Planetary Institute, 2005).

    Google Scholar 

  39. Tobie, G. Grasset, O., Lunine, J. I., Mocquet, A., Sotin, C. Titan's internal structure inferred from a coupled thermal-orbital model. Icarus 175, 496–502 (2005).

    Article  Google Scholar 

  40. Sohl, F., Hussman,n, H., Schwentker, B., Spohn, T., Lorenz, R. D. Interior structure models and tidal Love numbers of Titan. J. Geophys. Res. 108 (E12), 5130 (2003).

    Article  Google Scholar 

  41. Tobie, G., Lunine, J. I. & Sotin, C. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006).

    Article  Google Scholar 

  42. Fortes, A. D. Grinrod, P. M., Trickett, S. K., Vocadlo, L. Ammonium sulfate on Titan: Possible origin and role in cryvolcanism. Icarus 188, 139–153 (2007).

    Article  Google Scholar 

  43. Lorenz, R. D., McKay, C. P. & Lunine, J. I. Photochemically-induced collapse of Titan's atmosphere. Science 275, 642–644 (1997).

    Article  Google Scholar 

  44. Lorenz, R. D. et al. Titan's inventory of organic surface materials. Geophys. Res. Lett. 35, L02206 (2008).

    Article  Google Scholar 

  45. Stevenson, D. J. in Proc. Symp. on Titan, Toulouse, September 1991 29–33 (European Space Agency, Noordwijk, The Netherlands, 1992).

    Google Scholar 

  46. Coustenis, A. et al. Titan's atmosphere from ISO mid-infrared spectroscopy. Icarus 161, 383 (2003).

    Article  Google Scholar 

  47. Atreya, S. K. Titan's organic factory. Science 316, 843–845 (2007).

    Article  Google Scholar 

  48. Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  Google Scholar 

  49. Pujol, T. & North, G. R. Runaway greenhouse effect in a semigray radiative-convective model. J. Atmospheric Sci. 59, 2801–2810 (2002).

    Article  Google Scholar 

  50. Lorenz, R. D., Lunine, J. I. & McKay, C. P. Titan under a red giant sun: A new kind of “habitable” moon. Geophys. Res. Lett. 24, 2905–2908 (1997).

    Article  Google Scholar 

  51. The Limits of Organic Life in Planetary Systems (National Academies Press, Washington DC, 2007).

  52. Lorenz, R. D., Lunine, J. & Zimmerman, W. Post-Cassini exploration of Titan: Science goals, instrumentation and mission concepts. Adv. Space Res. 36, 281–285 (2005).

    Article  Google Scholar 

  53. Lindal, G. F. et al. The atmosphere of Titan — an analysis of the Voyager 1 radio occulation measurements. Icarus 53, 348–363 (1983).

    Article  Google Scholar 

  54. Hunten, D. The sequestration of ethane on Titan in smog particles. Nature 443, 669–670 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris McKay for improving the manuscript. The Cassini-Huygens project and NASA Planetary Atmospheres Program supported the work of the authors. J.I.L was a visiting professor at IFSI-INAF, Rome, Italy, during the final revision of the manuscript, and is grateful to its director Angioletta Coradini for the Institute's hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan I. Lunine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunine, J., Atreya, S. The methane cycle on Titan. Nature Geosci 1, 159–164 (2008). https://doi.org/10.1038/ngeo125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing