Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars



Phyllosilicate minerals are commonly found in marine sediments on Earth1,2. Accordingly, the presence of an ocean in the northern lowlands of Mars during the Noachian period would be expected to lead to the presence of abundant phyllosilicates in crust of the same age. However, mineralogical data from orbiting spectrometers show that phyllosilicates are rare in the Noachian-aged crust that is exposed in impact craters in the northern lowlands3. In contrast, phyllosilicate minerals are abundant in the equatorial and tropical highlands4,5, raising doubts about the presence of an ocean. Here we use climatic and geochemical model calculations and palaeohydrological reconstructions to assess the factors that control phyllosilicate synthesis and sedimentation on early Mars. Our model results show that temperatures in an ocean confined to latitudes poleward of 30° N would have been near freezing, which would have hindered the formation of phyllosilicate minerals in the ocean basin. In addition, the presence of cold-based glaciers surrounding the ocean would have limited the delivery of phyllosilicates from the highlands to the ocean basin. We therefore suggest that the presence of a cold, Noachian ocean could explain the paucity of phyllosilicates in the Noachian-aged crust of the northern lowlands.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Energy-balance model for the climate in early Mars.
Figure 2: Glaciers on early Mars.
Figure 3: Comparison of a skjaergaard area and a martian fretted terrain region.
Figure 4: Synthesis of clays at subzero temperatures.


  1. Futterer, D. K. in Marine Geochemistry (eds Schulz, H. D. & Zabel, M.) (Springer, 2006).

    Google Scholar 

  2. Hillier, S. Erosion in Origin and Mineralogy of Clays (ed. Velde, B.) 162–219 (Springer, 1995).

    Book  Google Scholar 

  3. Carter, J., Poulet, F., Bibring, J-P. & Murchie, S. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328, 1682–1686 (2010).

    Article  Google Scholar 

  4. Mustard, J. F. et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008).

    Article  Google Scholar 

  5. Wray, J. J., Murchie, S. L., Squyres, S. W., Seelos, F. P. & Tornabene, L. L. Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37, 1043–1046 (2009).

    Article  Google Scholar 

  6. Trenberth, K. E. & Caron, J. M. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14, 3433–3443 (2001).

    Article  Google Scholar 

  7. Williams, D. M. & Kasting, J. F. Habitable planets with high obliquities. Icarus 129, 254–267 (1997).

    Article  Google Scholar 

  8. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  Google Scholar 

  9. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993).

    Article  Google Scholar 

  10. Syvitski, J. P. M. Glacial sedimentation processes. Terra Antarct. 1, 251–253 (1994).

    Google Scholar 

  11. Griffith, T. W. & Anderson, J. B. Climatic control of sedimentation in bays and fjords of the northern Antarctic Peninsula. Mar. Geol. 85, 181–204 (1989).

    Article  Google Scholar 

  12. Eyles, C. H., Eyles, N. & Mialt, A. D. Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 51, 15–84 (1985).

    Article  Google Scholar 

  13. Stewart, T. G. in Glacial Marine Sedimentation: Paleoclimatic Significance (eds Anderson, J. B. & Ashley, G. M.) 95–105 (Geological Society of America, 1991).

    Book  Google Scholar 

  14. Andrews, J. T., Milliman, J. D., Jennings, A. E., Rynes, N. & Dwyer, J. Sediment thicknesses and Holocene glacial marine sedimentation rates in three East Greenland fjords (ca. 68° N). J. Geol. 102, 669–683 (1994).

    Article  Google Scholar 

  15. Hambrey, M. Glacial Environments (UBC Press, 1994).

    Google Scholar 

  16. Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008 (2010).

    Article  Google Scholar 

  17. Kargel, J. S. & Strom, R. G. Ancient glaciation on Mars. Geology 20, 3–7 (1992).

    Article  Google Scholar 

  18. Lucchitta, B. K. Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett 28, 403–406 (2001).

    Article  Google Scholar 

  19. Kite, E. S. & Hindmarsh, R. C. A. Did ice streams shape the largest channels on Mars? Geophys. Res. Lett. 34, L19202 (2007).

    Article  Google Scholar 

  20. Carr, M. H. Mars Global Surveyor observations of Martian fretted terrain. J. Geophys. Res. 106, 23571–23593 (2001).

    Article  Google Scholar 

  21. Irwin, R. P. III, Watters, T. R., Howard, A. D. & Zimbelman, J. R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. 109, E09011 (2004).

    Google Scholar 

  22. Larsen, E., Longva, O. & Follestad, B. A. Formation of De Geer moraines and implications for deglaciation dynamics. J. Q. Sci 6, 263–277 (2006).

    Article  Google Scholar 

  23. Johnson, G. L., Sommerhoff, G. & Egloff, J. Structure and morphology of the western Reykjanes Basin and the southern Greenland continental margin. Mar. Geol. 18, 175–196 (1975).

    Article  Google Scholar 

  24. Fairén, A. G., Davila, A. F., Gago-Duport, L., Amils, R. & McKay, C. P. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).

    Article  Google Scholar 

  25. Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).

    Article  Google Scholar 

  26. Morris, R. V. et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421–424 (2010).

    Article  Google Scholar 

  27. Michalski, J. R. & Niles, P. B. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nature Geosci. 3, 751–755 (2010).

    Article  Google Scholar 

  28. Andrews-Hanna, J. C., Zuber, M. T., Arvidson, R. E. & Wiseman, S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 115, E06002 (2010).

    Article  Google Scholar 

  29. Fairén, A. G., Fernández-Remolar, D., Dohm, J. M., Baker, V. R. & Amils, R. Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426 (2004).

    Article  Google Scholar 

  30. Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations



A.G.F. and A.F.D. designed research. L.G-D. and C.G. carried out the geochemical modelling. J.D.H-M. and J.F.K. generated the climatic model. C.P.M. analysed data and interpreted results. A.G.F. interpreted results and wrote the paper.

Corresponding author

Correspondence to Alberto G. Fairén.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2070 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fairén, A., Davila, A., Gago-Duport, L. et al. Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars. Nature Geosci 4, 667–670 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing