Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection


Volcanism far from plate boundaries is often attributed to an underlying mantle plume1,2,3,4,5,6. However, enigmatic observations of Hawaiian volcanism, such as variations in the volume of erupted volcanic material through time7,8, a geographical asymmetry in the geochemistry of the lavas9,10,11,12,13,14,15,16,17,18 and secondary volcanism that occurs far away from the hotspot15,16,17,18,19,20, cannot be explained by the classical mantle plume concept. Here we present a numerical model of mantle plume upwelling beneath Hawaii. We find that small-scale convection in the ambient mantle can erode the base of the lithosphere, creating a washboard topography on the underside of the plate. As the plate migrates over the upwelling plume, the plume interacts with alternating thicker and thinner sections of lithosphere to generate temporal variations in the flux of erupted volcanic material. The pre-existing washboard topography also causes the plume to spread and melt asymmetrically. In our simulations, this asymmetry in mantle flow generates an asymmetry in the chemistry of the erupted lavas. Finally, a more vigorous type of small-scale convection develops within the spreading plume, generating localized zones of upwelling well away from the hotspot. The associated magmatism is fed by chemically distinct material originating from the edges of the plume conduit. Our results show that shallow processes have an important influence on the character of volcanism fed by deep-rooted mantle plumes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview and concept.
Figure 2: Visualization of the central part of the reference model.
Figure 3: Source and volume flux of surface volcanism.


  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. Sleep, N. H. Hotspots and mantle plumes—some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  Google Scholar 

  3. Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Article  Google Scholar 

  4. Zhong, S. J. & Watts, A. B. Constraints on the dynamics of mantle plumes from uplift of the Hawaiian Islands. Earth Planet. Sci. Lett. 203, 105–116 (2002).

    Article  Google Scholar 

  5. van Hunen, J., Huang, J. & Zhong, S. The effect of shearing on the onset and vigor of small-scale convection in a Newtonian rheology. Geophys. Res. Lett. 30, 1991 (2003).

    Article  Google Scholar 

  6. Steinberger, B. Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000).

    Article  Google Scholar 

  7. van Ark, E. & Lin, J. Time variation in igneous volume flux of the Hawaii–Emperor hot spot seamount chain. J. Geophys. Res. 109, B11401 (2004).

    Article  Google Scholar 

  8. Vidal, V. & Bonneville, A. Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate. J. Geophys. Res. 109, B03104 (2004).

    Article  Google Scholar 

  9. Lassiter, J. C., DePaolo, D. J. & Tatsumoto, M. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11769–11780 (1996).

    Article  Google Scholar 

  10. Hanano, D., Weis, D., Scoates, J. S., Aciego, S. & DePaolo, D. J. Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochem. Geophys. Geosyst. 11, Q01004 (2010).

    Article  Google Scholar 

  11. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Article  Google Scholar 

  12. Bianco, T. A., Ito, G., van Hunen, J., Ballmer, M. D. & Mahoney, J. J. Geochemical variation at the Hawaiian hot spot caused by upper mantle dynamics and melting of a heterogeneous plume. Geochem. Geophys. Geosyst. 9, Q11003 (2008).

    Article  Google Scholar 

  13. Lassiter, J. C., Hauri, E. H., Reiners, P. W. & Garcia, M. O. Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet. Sci. Lett. 178, 269–284 (2000).

    Article  Google Scholar 

  14. Yang, H. J., Frey, F. A. & Clague, D. A. Constraints on the source components of lavas forming the Hawaiian North Arch and Honolulu volcanics. J. Petrol. 44, 603–627 (2003).

    Article  Google Scholar 

  15. Fekiacova, Z., Abouchami, W., Galer, S. J. G., Garcia, M. O. & Hofmann, A. W. Origin and temporal evolution of Ko’olau Volcano, Hawai’i: Inferences from isotope data on the Ko’olau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth Planet. Sci. Lett. 261, 65–83 (2007).

    Article  Google Scholar 

  16. Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L. & Uhl, J. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosyst. 9, Q09005 (2008).

    Article  Google Scholar 

  17. Garcia, M. O. et al. Petrology, Geochemistry and Geochronology of Kaua’i Lavas over 4 center dot 5 Myr: Implications for the Origin of Rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51, 1507–1540 (2010).

    Article  Google Scholar 

  18. Bianco, T. A., Ito, G., Becker, J. M. & Garcia, M. O. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem. Geophys. Geosyst. 6, Q08009 (2005).

    Article  Google Scholar 

  19. Clague, D. A., Uto, K., Satake, K., Davis, A. S. & Eruption, in Hawaiian Volcanoes: Deep Underwater Perspective Vol. 128 (ed. Takahashi, E.) 65–84 (Geophys. Monogr. Series, AGU, 2002).

    Book  Google Scholar 

  20. Lipman, P. W., Clague, D. A., Moore, J. G. & Holcomb, R. T. South Arch Volcanic Field—newly identified young lava flows on the sea-floor south of the Hawaiian Ridge. Geology 17, 611–614 (1989).

    Article  Google Scholar 

  21. Ballmer, M. D., Ito, G., van Hunen, J. & Tackley, P. J. Small-scale sublithospheric convection reconciles geochemistry and geochronology of ‘Superplume’ volcanism in the western and south Pacific. Earth Planet. Sci. Lett. 290, 224–232 (2010).

    Article  Google Scholar 

  22. van Hunen, J., Zhong, S. J., Shapiro, N. M. & Ritzwoller, M. H. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett. 238, 146–155 (2005).

    Article  Google Scholar 

  23. Huang, J. S., Zhong, S. J. & van Hunen, J. Controls on sublithospheric small-scale convection. J. Geophys. Res. 108, 2405–2417 (2003).

    Article  Google Scholar 

  24. Moore, W. B., Schubert, G. & Tackley, P. J. Three-dimensional simulations of plume–lithosphere interaction at the Hawaiian swell. Science 279, 1008–1011 (1998).

    Article  Google Scholar 

  25. Wessel, P. Observational constraints on models of the Hawaiian hot-spot swell. J. Geophys. Res. 98, 16095–16104 (1993).

    Article  Google Scholar 

  26. Robinson, J. E. & Eakins, B. W. Calculated volumes of individual shield volcanoes at the young end of the Hawaiian Ridge. J. Volcanol. Geotherm. Res. 151, 309–317 (2006).

    Article  Google Scholar 

  27. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    Article  Google Scholar 

  28. Ito, G. & Mahoney, J. J. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett. 230, 29–46 (2005).

    Article  Google Scholar 

  29. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).

    Article  Google Scholar 

  30. Wolfe, C. J. et al. Mantle P-wave velocity structure beneath the Hawaiian hotspot. Earth Planet. Sci. Lett. 303, 267–280 (2011).

    Article  Google Scholar 

Download references


M.D.B. has been supported by SNF-grants PBEZP2-127810 and 20020-119922/1, and G.I by grants NSF-0510482 and NSF-0855814. We are grateful to C. J. Wolfe and M. O. Garcia for input on earlier versions of the manuscript. Calculations were done at the Hawaii Open Supercomputing Center (HOSC).

Author information

Authors and Affiliations



M.D.B. carried out the numerical experiments. M.D.B. and G.I. led the interpretation of model results and writing, followed by J.v.H. and P.J.T.

Corresponding author

Correspondence to Maxim D. Ballmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1293 kb)

Supplementary Movie

Supplementary Movie (MPG 2861 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ballmer, M., Ito, G., van Hunen, J. et al. Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection. Nature Geosci 4, 457–460 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing