Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum

Abstract

The transient global warming event known as the Palaeocene–Eocene Thermal Maximum occurred about 55.9 Myr ago. The warming was accompanied by a rapid shift in the isotopic signature of sedimentary carbonates, suggesting that the event was triggered by a massive release of carbon to the ocean–atmosphere system. However, the source, rate of emission and total amount of carbon involved remain poorly constrained. Here we use an expanded marine sedimentary section from Spitsbergen to reconstruct the carbon isotope excursion as recorded in marine organic matter. We find that the total magnitude of the carbon isotope excursion in the ocean–atmosphere system was about 4‰. We then force an Earth system model of intermediate complexity to conform to our isotope record, allowing us to generate a continuous estimate of the rate of carbon emissions to the atmosphere. Our simulations show that the peak rate of carbon addition was probably in the range of 0.3–1.7 Pg C yr−1, much slower than the present rate of carbon emissions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area.
Figure 2: Geochemical profiles throughout the PETM from core BH9-05 in Spitsbergen.
Figure 3: Filtered records of core BH9-05 in the depth domain modified from ref. 2.
Figure 4: Model results of the PETM carbon release rate and cumulative amount of carbon added versus time from the onset of the CIE (535 mbs) (age model is from ref. 2).

Similar content being viewed by others

References

  1. Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene–Eocene Thermal Maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).

    Article  Google Scholar 

  2. Charles, A. J. et al. Constraints on the numerical age of the Paleocene–Eocene boundary. Geochem. Geophys. Geosyst. 10.1029/2010GC003426 (in the press).

  3. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature 441, 610–613 (2006).

    Article  Google Scholar 

  4. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science 302, 1551–1554 (2003).

    Article  Google Scholar 

  5. Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 1556–1557 (2006).

    Article  Google Scholar 

  6. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  7. Colosimo, A., Bralower, T. & Zachos, J. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 198 (2006).

    Google Scholar 

  8. Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  9. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  10. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090 (2003).

    Article  Google Scholar 

  11. Higgins, J. & Schrag, D. Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 245, 523–537 (2006).

    Article  Google Scholar 

  12. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004).

    Article  Google Scholar 

  13. Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C. & Röhl, U. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 30–40 (2010).

    Article  Google Scholar 

  14. Walker, J. & Kasting, J. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  Google Scholar 

  15. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997).

    Article  Google Scholar 

  16. Uroza, C. A. & Steel, R. J. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway. Sedim. Geol. 203, 229–245 (2008).

    Article  Google Scholar 

  17. Bruhn, R. & Steel, R. High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture. J. Sedim. Res. 73, 745–755 (2003).

    Article  Google Scholar 

  18. Riber, L. Paleogene Depositional Conditions and Climatic Changes of the Frysjaodden Formation in Central Spitsbergen (Sedimentology and Mineralogy) Unpublished Master thesis, Univ. Oslo (2009), p. 112.

  19. Dypvik, H. et al. The Paleocene–Eocene Thermal Maximum (PETM) in Svalbard—clay mineral and geochemical signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 156–169 (2011).

    Article  Google Scholar 

  20. Harding, I. C. et al. Sea-level and salinity fluctuations during the Paleocene–Eocene Thermal Maximum in Arctic Spitsbergen. Earth Planet. Sci. Lett. 303, 97–107 (2011).

    Article  Google Scholar 

  21. Hughes, W., Holba, A. & Dzou, L. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 59, 3581–3598 (1995).

    Article  Google Scholar 

  22. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–222 (1978).

    Article  Google Scholar 

  23. Leithold, E. L., Blair, N. E. & Perkey, D. W. Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Glob. Biogeochem. Cycles 20, GB3022 (2006).

    Article  Google Scholar 

  24. Helland-Hansen, W. Sedimentation in Paleogene foreland basin, Spitsbergen. AAPG Bull. 74, 260–272 (1990).

    Google Scholar 

  25. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36, 315–318 (2008).

    Article  Google Scholar 

  26. Robinson, S. A. Shallow-water carbonate record of the Paleocene–Eocene Thermal Maximum from a Pacific Ocean guyot. Geology 39, 51–54 (2011).

    Article  Google Scholar 

  27. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  28. Bowen, G. J. & Zachos, J. C. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 3, 866–869 (2010).

    Article  Google Scholar 

  29. Svensen, H., Planke, S. & Corfu, F. Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. J. Geol. Soc. 167, 433–436 (2010).

    Article  Google Scholar 

  30. Coplen, T. B. et al. New guidelines for 13C measurements. Anal. Chem. 78, 2439–2441 (2006).

    Article  Google Scholar 

  31. Ridgwell, A. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22, PA4102 (2007).

    Article  Google Scholar 

  32. Ridgwell, A. & Hargreaves, J. C. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21, GB2008 (2007).

    Article  Google Scholar 

  33. Bice, K. L., Barron, E. J. & Peterson, W. H. in Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, T. & Burke, K.) 227–247 (Oxford Univ. Press, 1998).

    Google Scholar 

  34. Zachos, J. C. Trends, rhythms, and aberrations in global climate 65 Myr to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  35. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  36. Cerling, T. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377–400 (1991).

    Article  Google Scholar 

  37. Koch, P., Zachos, J. & Gingerich, P. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358, 319–322 (1992).

    Article  Google Scholar 

  38. Shellito, C., Sloan, L. & Huber, M. Climate model sensitivity to atmospheric CO2 levels in the Early–Middle Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 113–123 (2003).

    Article  Google Scholar 

  39. Pagani, M., Zachos, J., Freeman, K., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    Article  Google Scholar 

  40. Smith, F., Wing, S. & Freeman, K. Magnitude of the carbon isotope excursion at the Paleocene–Eocene Thermal Maximum: The role of plant community change. Earth Planet. Sci. Lett. 262, 50–65 (2007).

    Article  Google Scholar 

  41. Broecker, W. & Peng, T. Tracers in the Sea (Eldigio, 1982).

    Google Scholar 

Download references

Acknowledgements

We thank J. Zachos, T. Bralower, T. White, M. Arthur, D. Bice, G. Dickens, R. Zeebe, A. Sluijs and G. Bowen for discussions, and D. Walizer for assistance in the laboratory. High resolution core sampling by J. Nagy, H. Dypvik, L. Riber, D. Jargvoll and M. Jochmann is appreciated. This research was supported by The Worldwide Universities Network, Pennsylvania State University, US National Science Foundation awards EAR-0628486 and EAR-06520020 to L.R.K. and EAR-0844 212 to K.H.F.

Author information

Authors and Affiliations

Authors

Contributions

L.R.K., Y.C. and A.J.R. designed the research. Y.C. carried out all the model simulations. Y.C., C.K.J. and A.F.D. conducted geochemical analyses. Y.C. and L.R.K. wrote the paper with contributions from A.J.C., C.K.J. and A.F.D. All authors contributed to interpretation of data.

Corresponding author

Correspondence to Ying Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Kump, L., Ridgwell, A. et al. Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geosci 4, 481–485 (2011). https://doi.org/10.1038/ngeo1179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing