Abstract
Laminated accretionary carbonate structures known as stromatolites are a prominent feature of the sedimentary record over the past 3,500 Myr (ref. 1). The macroscopic similarity to modern microbial structures has led to the inference that these structures represent evidence of ancient life1,2. However, as Archaean stromatolites only rarely contain microfossils, the possibility of abiogenic origins has been raised2. Here, we present the results of nanoscale studies of the 2,724-Myr-old stromatolites from the Tumbiana Formation (Fortescue Group, Australia) showing organic globule clusters within the thin layers of the stromatolites. Aragonite nanocrystals are also closely associated with the organic globules, a combination that is remarkably similar to the organo-mineral building blocks of modern stromatolites3,4,5. Our results support microbial mediation for the formation of the Tumbiana stromatolites, and extend the geologic record of primary aragonite by more than 2,300 Myr (ref. 6).
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Chance played a role in determining whether Earth stayed habitable
Communications Earth & Environment Open Access 11 December 2020
-
Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean
Communications Earth & Environment Open Access 22 September 2020
-
Red-edge position of habitable exoplanets around M-dwarfs
Scientific Reports Open Access 08 August 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Walter, M. R. in Earth Earliest Biosphere (ed. Schopf, J. W.) 187–213 (Princeton Univ. Press, Princeton, 1983).
Grotzinger, J. P. & Knoll, A. H. Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).
Benzerara, K. et al. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl Acad. Sci. USA 103, 9440–9445 (2006).
Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).
Sprachta, S., Camoin, G., Golubic, S. & Le Campion, T. Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 103–124 (2001).
Hallam, A. & O’Hara, M. J. Aragonitic fossils in the lower carboniferous of Scotland. Nature 195, 273–274 (1962).
Van Kranendonk, M. J., Philippot, P. & Lepot, K. GSWA Record 2006/14 (Geological Survey of Western Australia, Perth, 2006).
Hayes, J. M. in Early Life on Earth Vol. 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994).
Sakurai, R., Ito, M., Ueno, Y., Kitajima, K. & Maruyama, S. Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambr. Res. 138, 255–273 (2005).
Buick, R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science 155, 74–77 (1992).
Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. Lond. B 361, 869–885 (2006).
Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).
Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).
Smith, R. E., Perdrix, J. L. & Parks, T. C. Burial metamorphism in the Hamersley Basin, Western Australia. J. Petrol. 23, 75–102 (1982).
Stolz, J. F., Feinstein, T. N., Salsi, J., Visscher, P. T. & Reid, R. P. TEM analysis of microbial mediated sedimentation and lithification in modern marine stromatolites. Am. Mineral. 86, 826–833 (2001).
Arp, G., Reimer, A. & Reitner, J. Microbialite formation in seawater of increased alkalinity, Satonda crater lake, Indonesia. J. Sediment. Res. 73, 105–127 (2003).
Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).
Buick, R. Microfossil recognition in Archean rocks; an appraisal of spheroids and filaments from a 3,500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–459 (1990).
Rasmussen, B., Fletcher, I. R. & McNaughton, N. J. Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales. Geology 29, 963–966 (2001).
Gautret, P., Camoin, G., Golubic, S. & Sprachta, S. Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau atoll, French Polynesia. J. Sediment. Res. 74, 462–478 (2004).
Lis, G. P., Mastalerz, M., Schimmelmann, A., Lewan, M. D. & Stankiewicz, B. A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R-0 in type-II kerogens from Devonian black shales. Org. Geochem. 36, 1533–1552 (2005).
Patience, R. L. et al. The functionality of organic nitrogen in some recent sediments from the Peru Upwelling Region. Org. Geochem. 18, 161–169 (1992).
Rouxhet, P. G., Robin, P. L. & Nicaise, G. in Kerogen: Insoluble Organic Matter from Sedimentary Rocks (ed. Durand, B.) 163–189 (Editions Technip, Paris, 1980).
Pitcairn, I. K., Roberts, S., Teagle, D. A. H. & Craw, D. Detecting hydrothermal graphite deposition during metamorphism and gold mineralization. J. Geol. Soc. Lond. 162, 429–432 (2005).
Hardie, L. A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31, 785–788 (2003).
Thomas, M. M., Clouse, J. A. & Longo, J. M. Adsorption of organic-compounds on carbonate minerals. 3. Influence on dissolution rates. Chem. Geol. 109, 227–237 (1993).
Liu, M. & Yund, R. A. Transformation kinetics of polycrystalline aragonite to calcite—New experimental-data, modeling, and implications. Contrib. Mineral. Petrol. 114, 465–478 (1993).
Aloisi, G. et al. Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34, 1017–1020 (2006).
Kawaguchi, T. & Decho, A. W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 240, 230–235 (2002).
Kirkland, B. L. et al. Alternative origins for nannobacteria-like objects in calcite. Geology 27, 347–350 (1999).
Acknowledgements
M.J. Van Kranendonk, P. Lopez-Garcia and D. Moreira are thanked for assistance during the Pilbara Drilling Project (PDP), O. Boudouma, C. Dominici, D. Neuville, Y. Wang for assistance during SEM, FIB, Raman and XRD analyses and C. Thomazo, O. Beyssac, P. Rey and M. Van Zuilen for discussion. P.P. thanks the Institut de Physique du Globe de Paris, the Institut des Sciences de l’Univers and the Geological Survey of Western Australia for supporting the PDP. This study was supported by grants from INSU (P.P.), Agence Nationale de la Recherche (P.P., K.B.), Région Ile-de-France (P.P.), NSF and the Stanford University (K.B. and G.E.B.). This is IPGP contribution No. 2307.
Author information
Authors and Affiliations
Contributions
P.P. organized the Pilbara Drilling Project. K.L. and P.P. carried out SEM, Raman, FIB and CLSM analyses. K.L. and K.B. carried out HRTEM analyses. K.B. and K.L. carried out STXM analyses. All authors wrote the paper.
Corresponding authors
Supplementary information
Supplementary Information
Supplementary figures S1-S4 and supplementary table S1 (PDF 3157 kb)
Rights and permissions
About this article
Cite this article
Lepot, K., Benzerara, K., Brown, G. et al. Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geosci 1, 118–121 (2008). https://doi.org/10.1038/ngeo107
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo107
This article is cited by
-
Chance played a role in determining whether Earth stayed habitable
Communications Earth & Environment (2020)
-
Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean
Communications Earth & Environment (2020)
-
Red-edge position of habitable exoplanets around M-dwarfs
Scientific Reports (2017)
-
4.6-billion-year-old aragonite and its implications for understanding the geological record of Ca-carbonate
Carbonates and Evaporites (2015)