Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbially influenced formation of 2,724-million-year-old stromatolites


Laminated accretionary carbonate structures known as stromatolites are a prominent feature of the sedimentary record over the past 3,500 Myr (ref. 1). The macroscopic similarity to modern microbial structures has led to the inference that these structures represent evidence of ancient life1,2. However, as Archaean stromatolites only rarely contain microfossils, the possibility of abiogenic origins has been raised2. Here, we present the results of nanoscale studies of the 2,724-Myr-old stromatolites from the Tumbiana Formation (Fortescue Group, Australia) showing organic globule clusters within the thin layers of the stromatolites. Aragonite nanocrystals are also closely associated with the organic globules, a combination that is remarkably similar to the organo-mineral building blocks of modern stromatolites3,4,5. Our results support microbial mediation for the formation of the Tumbiana stromatolites, and extend the geologic record of primary aragonite by more than 2,300 Myr (ref. 6).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organic globules in the Tumbiana stromatolites.
Figure 2: Association of aragonite spheroids with organic globules (Globule m1).


  1. Walter, M. R. in Earth Earliest Biosphere (ed. Schopf, J. W.) 187–213 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  2. Grotzinger, J. P. & Knoll, A. H. Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).

    Article  Google Scholar 

  3. Benzerara, K. et al. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl Acad. Sci. USA 103, 9440–9445 (2006).

    Article  Google Scholar 

  4. Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).

    Article  Google Scholar 

  5. Sprachta, S., Camoin, G., Golubic, S. & Le Campion, T. Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 103–124 (2001).

    Article  Google Scholar 

  6. Hallam, A. & O’Hara, M. J. Aragonitic fossils in the lower carboniferous of Scotland. Nature 195, 273–274 (1962).

    Article  Google Scholar 

  7. Van Kranendonk, M. J., Philippot, P. & Lepot, K. GSWA Record 2006/14 (Geological Survey of Western Australia, Perth, 2006).

    Google Scholar 

  8. Hayes, J. M. in Early Life on Earth Vol. 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  9. Sakurai, R., Ito, M., Ueno, Y., Kitajima, K. & Maruyama, S. Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambr. Res. 138, 255–273 (2005).

    Article  Google Scholar 

  10. Buick, R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science 155, 74–77 (1992).

    Article  Google Scholar 

  11. Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. Lond. B 361, 869–885 (2006).

    Article  Google Scholar 

  12. Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).

    Article  Google Scholar 

  13. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  Google Scholar 

  14. Smith, R. E., Perdrix, J. L. & Parks, T. C. Burial metamorphism in the Hamersley Basin, Western Australia. J. Petrol. 23, 75–102 (1982).

    Article  Google Scholar 

  15. Stolz, J. F., Feinstein, T. N., Salsi, J., Visscher, P. T. & Reid, R. P. TEM analysis of microbial mediated sedimentation and lithification in modern marine stromatolites. Am. Mineral. 86, 826–833 (2001).

    Article  Google Scholar 

  16. Arp, G., Reimer, A. & Reitner, J. Microbialite formation in seawater of increased alkalinity, Satonda crater lake, Indonesia. J. Sediment. Res. 73, 105–127 (2003).

    Article  Google Scholar 

  17. Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    Article  Google Scholar 

  18. Buick, R. Microfossil recognition in Archean rocks; an appraisal of spheroids and filaments from a 3,500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–459 (1990).

    Article  Google Scholar 

  19. Rasmussen, B., Fletcher, I. R. & McNaughton, N. J. Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales. Geology 29, 963–966 (2001).

    Article  Google Scholar 

  20. Gautret, P., Camoin, G., Golubic, S. & Sprachta, S. Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau atoll, French Polynesia. J. Sediment. Res. 74, 462–478 (2004).

    Article  Google Scholar 

  21. Lis, G. P., Mastalerz, M., Schimmelmann, A., Lewan, M. D. & Stankiewicz, B. A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R-0 in type-II kerogens from Devonian black shales. Org. Geochem. 36, 1533–1552 (2005).

    Article  Google Scholar 

  22. Patience, R. L. et al. The functionality of organic nitrogen in some recent sediments from the Peru Upwelling Region. Org. Geochem. 18, 161–169 (1992).

    Article  Google Scholar 

  23. Rouxhet, P. G., Robin, P. L. & Nicaise, G. in Kerogen: Insoluble Organic Matter from Sedimentary Rocks (ed. Durand, B.) 163–189 (Editions Technip, Paris, 1980).

    Google Scholar 

  24. Pitcairn, I. K., Roberts, S., Teagle, D. A. H. & Craw, D. Detecting hydrothermal graphite deposition during metamorphism and gold mineralization. J. Geol. Soc. Lond. 162, 429–432 (2005).

    Article  Google Scholar 

  25. Hardie, L. A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31, 785–788 (2003).

    Article  Google Scholar 

  26. Thomas, M. M., Clouse, J. A. & Longo, J. M. Adsorption of organic-compounds on carbonate minerals. 3. Influence on dissolution rates. Chem. Geol. 109, 227–237 (1993).

    Article  Google Scholar 

  27. Liu, M. & Yund, R. A. Transformation kinetics of polycrystalline aragonite to calcite—New experimental-data, modeling, and implications. Contrib. Mineral. Petrol. 114, 465–478 (1993).

    Article  Google Scholar 

  28. Aloisi, G. et al. Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34, 1017–1020 (2006).

    Article  Google Scholar 

  29. Kawaguchi, T. & Decho, A. W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 240, 230–235 (2002).

    Article  Google Scholar 

  30. Kirkland, B. L. et al. Alternative origins for nannobacteria-like objects in calcite. Geology 27, 347–350 (1999).

    Article  Google Scholar 

Download references


M.J. Van Kranendonk, P. Lopez-Garcia and D. Moreira are thanked for assistance during the Pilbara Drilling Project (PDP), O. Boudouma, C. Dominici, D. Neuville, Y. Wang for assistance during SEM, FIB, Raman and XRD analyses and C. Thomazo, O. Beyssac, P. Rey and M. Van Zuilen for discussion. P.P. thanks the Institut de Physique du Globe de Paris, the Institut des Sciences de l’Univers and the Geological Survey of Western Australia for supporting the PDP. This study was supported by grants from INSU (P.P.), Agence Nationale de la Recherche (P.P., K.B.), Région Ile-de-France (P.P.), NSF and the Stanford University (K.B. and G.E.B.). This is IPGP contribution No. 2307.

Author information

Authors and Affiliations



P.P. organized the Pilbara Drilling Project. K.L. and P.P. carried out SEM, Raman, FIB and CLSM analyses. K.L. and K.B. carried out HRTEM analyses. K.B. and K.L. carried out STXM analyses. All authors wrote the paper.

Corresponding authors

Correspondence to Kevin Lepot or Pascal Philippot.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 and supplementary table S1 (PDF 3157 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lepot, K., Benzerara, K., Brown, G. et al. Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geosci 1, 118–121 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing