Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics

Subjects

This article has been updated

Abstract

Materials formed in the early Solar System generally exhibit a characteristic oxygen isotopic signature known as the non-mass-dependent oxygen isotope anomaly1,2, the origins of which are unclear. The anomalies are thought to reflect isotopic fractionation in the chemical reaction that first formed solid material from the gaseous medium, but the proposed mechanism and environment of formation are the subject of debate3,4,5,6. Here we analyse micrometre-sized grains of acid-insoluble organic matter from a carbonaceous chondritic meteorite recovered in Antarctica. We find that the organic matter has the highest 18O/16O and 17O/16O ratios known in planetary material, except for pre-solar grains7. The oxygen ratios are enhanced by up to 53±11% and the 13C/12C values by 29±5% relative to terrestrial values. We suggest that the coherent enrichments of 17O, 18O and 13C in the organic matter can best be explained by its formation being due to the photodissociation of carbon monoxides in a gas medium at temperatures of about 60 K or higher. These conditions are equivalent to those expected at the envelope of the proto-solar nebula, and we suggest the organic matter formed there.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of the isotopic ratios obtained from Yamato-793495 (CR2) IOM area no. 1 rastered for 50×50 μm2.
Figure 2: The oxygen three-isotope diagram plotted for Yamato-793495 (CR2) IOM area no. 1.
Figure 3: Summary plots demonstrating the correlations between the δ18O or δD anomalies and other isotope anomalies observed in Yamato-793495 (CR2) IOM area no. 1.
Figure 4: Comparison of the O-isotope compositions among the solid planetary materials and the endmember compositions in the solar system.

Similar content being viewed by others

Change history

  • 08 February 2011

    In the PDF version of this Letter originally published online, the year of publication should have been 2011. This error has now been corrected in all versions of the Letter.

References

  1. Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    Article  Google Scholar 

  2. Clayton, R. N. in Meteorites, Comets and Planets (ed. Davis, A. M.) 129–142 (Treatise on Geochemistry, Vol. 1, Elesevier–Pergamon, 2005).

    Google Scholar 

  3. Thiemens, M. H. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  Google Scholar 

  4. Clayton, R. N. Self-shielding in the solar nebula. Nature 415, 860–861 (2002).

    Article  Google Scholar 

  5. Marcus, R. A. Mass-independent isotope effect in the earliest processed solids in the solar system: A possible mechanism. J. Chem. Phys. 121, 8201–8211 (2004).

    Article  Google Scholar 

  6. Lyons, J. R. et al. Timescales for the evolution of oxygen isotope composition in the solar nebula. Geochim. Cosmochim. Acta 73, 4998–5017 (2009).

    Article  Google Scholar 

  7. Nguyen, A. N. et al. Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. Astrophys. J. 656, 1223–1240 (2007).

    Article  Google Scholar 

  8. Hashizume, K. & Chaussidon, M. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula. Nature 434, 619–622 (2005).

    Article  Google Scholar 

  9. Hashizume, K. & Chaussidon, M. Two oxygen isotopic components with extra-selenial origins observed among lunar metallic grains—in search for the solar wind component. Geochim. Cosmochim. Acta 73, 3038–3054 (2009).

    Article  Google Scholar 

  10. Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004).

    Article  Google Scholar 

  11. Alexander, C. M. O’D. et al. The origin of macromolecular organic matter: A carbon and nitrogen isotope study. Meteorit. Planet. Sci. 33, 603–622 (1998).

    Article  Google Scholar 

  12. Pearson, V. K., Sephton, M. A. & Gilmour, I. Molecular and isotopic indicators of alteration in CR chondrites. Meteorit. Planet. Sci. 41, 1291–1303 (2006).

    Article  Google Scholar 

  13. Martins, Z., Alexander, C. M. O’D., Orzechowska, G. E., Fogel, M. L. & Ehrenfreund, P. Indigenous amino acids in primitive CR meteorites. Meteorit. Planet. Sci. 42, 2125–2136 (2007).

    Article  Google Scholar 

  14. Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    Article  Google Scholar 

  15. Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: Remnants of the protosolar disk. Science 314, 1439–1442 (2006).

    Article  Google Scholar 

  16. Floss, C. & Stadermann, F. J. High abundances of circumstellar and interstellar C-anomalous phases in the primitive CR3 chondrites QUE99177 and MET00426. Astrophys. J. 697, 1242–1255 (2009).

    Article  Google Scholar 

  17. Remusat, L. et al. Proto-planetary disk chemistry recorded by D-rich organic radicals in carbonaceous chondrites. Astrophys. J. 698, 2087–2092 (2009).

    Article  Google Scholar 

  18. Cody, G. D. & Alexander, C. M. O’D. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta 69, 1085–1097 (2005).

    Article  Google Scholar 

  19. Halbout, J., Robert, F. & Javoy, M. Hydrogen and oxygen isotope compositions in kerogen from the Orgueil meteorite—Clues to a solar origin. Geochim. Cosmochim. Acta 54, 1453–1462 (1990).

    Article  Google Scholar 

  20. Young, E. D. & Russell, S. S. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998).

    Article  Google Scholar 

  21. Oba, Y. & Naraoka, H. Elemental and isotope behavior of macromolecular organic matter from CM chondrites during hydrous pyrolysis. Meteorit. Planet. Sci. 44, 943–953 (2009).

    Article  Google Scholar 

  22. Aléon, J., Robert, F., Duprat, J. & Derenne, S. Extreme oxygen isotope ratios in the early Solar System. Nature 437, 385–388 (2005).

    Article  Google Scholar 

  23. Visser, R., van Dishoeck, E. F. & Black, J. H. The photodissociation and chemistry of CO isotopologues: Applications to interstellar clouds and circumstellar disks. Astron. Astrophys. 503, 323–343 (2009).

    Article  Google Scholar 

  24. Hashizume, K., Chaussidon, M., Marty, B. & Terada, K. Protosolar carbon isotopic composition: Implications for the origin of meteoritic organics. Astrophys. J. 600, 480–484 (2004).

    Article  Google Scholar 

  25. Aléon, J. & Robert, F. Interstellar chemistry recorded by nitrogen isotopes in Solar System organic matter. Icarus 167, 424–430 (2004).

    Article  Google Scholar 

  26. Rodgers, S. D. & Charnley, S. B. Nitrogen superfractionation in dense cloud cores. Mon. Not. R. Astron. Soc. 385, L48–L52 (2008).

    Article  Google Scholar 

  27. Chakraborty, S., Ahmed, M., Jackson, T. L. & Thiemens, M. H. Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO. Science 321, 1328–1331 (2008).

    Article  Google Scholar 

  28. Sakamoto, N. et al. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317, 231–233 (2007).

    Article  Google Scholar 

  29. Ireland, T. R., Holden, P., Norman, M. D. & Clarke, J. Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith. Nature 440, 776–778 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The meteorite sample for isotope studies on organic matter was provided to H.N. by the National Institute of Polar Research, Japan. We thank N. Sugiura for comments on the manuscript. K.H. and H.N. were supported in this study by JSPS and the Atmosphere and Ocean Research Institute, University of Tokyo.

Author information

Authors and Affiliations

Authors

Contributions

K.H. designed the study; H.N. prepared meteoritic and standard samples; K.H. and N.T. performed the SIMS measurements; K.H. prepared the manuscript; N.T., H.N. and Y.S. gave technical support and conceptual advice.

Corresponding author

Correspondence to Ko Hashizume.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2827 kb)

Supplementary Information

Supplementary Information (XLS 997 kb)

Supplementary Information

Supplementary Information (XLS 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashizume, K., Takahata, N., Naraoka, H. et al. Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nature Geosci 4, 165–168 (2011). https://doi.org/10.1038/ngeo1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing