Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy

This article has been updated

Abstract

Continental lithosphere can undergo pervasive internal deformation, often distributed over broad zones near plate boundaries. However, because of the paucity of observational constraints on three-dimensional movement at depth, patterns of flow within the lithosphere remain uncertain. Endmember models for lithospheric flow invoke deformation localized on faults or deep shear zones or, alternatively, diffuse, viscous-fluid-like flow. Here we determine seismic Rayleigh-wave anisotropy in the crust and mantle of the Aegean region, an archetypal example of continental deformation. Our data reveal a complex, depth-dependent flow pattern within the extending lithosphere. Beneath the northern Aegean Sea, fast shear wave propagation is in a North–South direction within the mantle lithosphere, parallel to the extensional component of the current strain rate field. In the south-central Aegean, where deformation is weak at present, anisotropic fabric in the lower crust runs parallel to the direction of palaeo-extension in the Miocene. The close match of orientations of regional-scale anisotropic fabric and the directions of extension during the last significant episodes of deformation implies that at least a large part of the extension in the Aegean has been taken up by distributed viscous flow in the lower crust and lithospheric mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The study area and path coverage.
Figure 2: Anisotropic phase-velocity maps.
Figure 3: S-wave velocity variations with azimuth.
Figure 4: Azimuthal anisotropy in the lower crust and upper mantle of the Aegean Sea.

Similar content being viewed by others

Change history

  • 02 February 2011

    In the version of this Article originally published online, the label 'Lower crust' was missing from the top of Fig. 2b. This error has now been corrected in all versions of the text.

References

  1. Brun, J-P. & Faccenna, C. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet. Sci. Lett 272, 1–7 (2008).

    Article  Google Scholar 

  2. Meier, T., Dietrich, K., Stöckhert, B. & Harjes, H-P. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int. 156, 45–58 (2004).

    Article  Google Scholar 

  3. Van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E. & Wortel, R. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33, 325–328 (2005).

    Article  Google Scholar 

  4. Brun, J-P. & Sokoutis, D. 45 m.y. of Aegean crust and mantle flow driven by trench retreat. Geology 38, 815–818 (2010).

    Article  Google Scholar 

  5. McKenzie, D. Active tectonics of the Mediterranean region. Geophys. J. R. Astron. Soc. 30, 109–185 (1972).

    Article  Google Scholar 

  6. Le Pichon, X. & Angelier, J. The Aegean Sea. Phil. Trans. R. Soc. Lond. A 300, 357–372 (1981).

    Article  Google Scholar 

  7. Jolivet, L. & Faccenna, C. Mediterranean extension and the Africa–Eurasia collision. Tectonics 19, 1095–1106 (2000).

    Article  Google Scholar 

  8. Lister, G. S., Banga, G. & Feenstra, A. Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–225 (1984).

    Article  Google Scholar 

  9. Tirel, C., Gautier, P., van Hinsbergen, D. J. J. & Wortel, M. J. R. in Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone 311 (eds van Hinsbergen, D. J. J., Edwards, M. A. & Govers, R.) 257–292 (Spec. Publ. Geol. Soc. Lond., 2009).

    Google Scholar 

  10. Walcott, C. R. & White, S. H. Constraints on the kinematics of post-orogenic extension imposed by stretching lineations in the Aegean region. Tectonophysics 298, 155–175 (1998).

    Article  Google Scholar 

  11. Armijo, R., Meyer, B., King, G. C. P., Rigo, A. & Papanastassiou, D. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int. 126, 11–53 (1996).

    Article  Google Scholar 

  12. Tirel, C., Gueydan, F., Tiberi, C. & Brun, J-P. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 228, 267–280 (2004).

    Article  Google Scholar 

  13. McClusky, A. et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 105, 5695–5719 (2000).

    Article  Google Scholar 

  14. Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. & Philippe Vernant, P. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488, 22–30 (2010).

    Article  Google Scholar 

  15. Floyd, M. A. et al. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. J. Geophys. Res. 115, B10403 (2010).

    Article  Google Scholar 

  16. Kreemer, C., Chamot-Rooke, N. & Le Pichon, X. Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett. 225, 329–346 (2004).

    Article  Google Scholar 

  17. Taymaz, T., Jackson, J. & McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 106, 433–490 (1991).

    Article  Google Scholar 

  18. Mascle, J. & Martin, L. Shallow structure and recent evolution of the Aegean Sea: A synthesis based on continuous reflection profiles. Mar. Geol. 94, 271–299 (1990).

    Article  Google Scholar 

  19. Papazachos, C. B. & Kiratzi, A. A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253, 129–153 (1996).

    Article  Google Scholar 

  20. Jolivet, L., Faccenna, C. & Piromallo, C. From mantle to crust: Stretching the Mediterranean. Earth Planet. Sci. Lett. 285, 198–209 (2009).

    Article  Google Scholar 

  21. LePichon, X. & Kreemer, C. The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annu. Rev. Earth Planet. Sci. 38, 323–351 (2010).

    Article  Google Scholar 

  22. Bourne, S. J., England, P. C. & Parsons, B. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391, 655–659 (1998).

    Article  Google Scholar 

  23. Molnar, P. & Tapponier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Science 189, 419–426 (1975).

    Article  Google Scholar 

  24. Molnar, P. Continental tectonics in the aftermath of plate tectonics. Nature 335, 131–137 (1988).

    Article  Google Scholar 

  25. Ribe, N. M. On the relation between seismic anisotropy and finite strain. J. Geophys. Res. 97, 8737–8747 (1992).

    Article  Google Scholar 

  26. Tommasi, A., Mainprice, D., Canova, G. & Chastel, Y. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. J. Geophy. Res. 105, 7893–7908 (2000).

    Article  Google Scholar 

  27. Tatham, D. J., Lloyd, G. E., Butler, R. W. H. & Casey, M. Amphibole and lower crustal seismic properties. Earth Planet. Sci. Lett. 267, 118–128 (2008).

    Article  Google Scholar 

  28. Becker, T. W., Chevrot, S., Schulte-Pelkum, V. & Blackman, D. K. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res. 111, B08309 (2006).

    Article  Google Scholar 

  29. Hatzfeld, D. et al. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res. 106, 30737–30753 (2001).

    Article  Google Scholar 

  30. Schmid, C., van der Lee, S. & Giardini, D. Delay times and shear wave splitting in the Mediterranean region. Geophys. J. Int. 159, 275–290 (2004).

    Article  Google Scholar 

  31. Montagner, J-P. & Nataf, H-C. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res. 91, 511–520 (1986).

    Article  Google Scholar 

  32. Montagner, J-P. & Tanimoto, T. Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res. 96, 20337–20351 (1991).

    Article  Google Scholar 

  33. Shapiro, N. M., Ritzwoller, M. H., Molnar, P. & Levin, V. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science 305, 233–236 (2004).

    Article  Google Scholar 

  34. Pedersen.H. A., Bruneton.M., Maupin.V. & SVEKALAPKO Seismic Tomography Working group. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis. Earth Planet. Sci. Lett. 244, 590–605 (2006).

    Google Scholar 

  35. Yang, Y. & Forsyth, D. W. Rayleigh wave phase velocities, small-scale convection, and azimuthal anisotropy beneath southern California. J. Geophys. Res. 111, B07306 (2006).

    Google Scholar 

  36. Marone, F. & Romanowicz, B. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature 447, 198–201 (2007).

    Article  Google Scholar 

  37. Moschetti, M. P., Ritzwoller, M. H., Lin, F. & Yang, Y. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature 464, 885–889 (2010).

    Article  Google Scholar 

  38. Zhang, X., Paulssen, H., Lebedev, S. & Meier, T. Surface wave tomography of the Gulf of California. Geophys. Res. Lett. 34, L15305 (2007).

    Google Scholar 

  39. Deschamps, F., Lebedev, S., Meier, T. & Trampert, J. Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet. Sci. Lett. 274, 489–498 (2008).

    Article  Google Scholar 

  40. Endrun, B., Meier, T., Lebedev, S., Bohnhoff, M., Stavrakakis, G. & Harjes, H-P. S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys. J. Int. 174, 593–616 (2008).

    Article  Google Scholar 

  41. Kreemer, C., Holt, W. E. & Haines, A. J. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int. 154, 8–34 (2003).

    Article  Google Scholar 

  42. Molnar, P. et al. Continuous deformation versus faulting through the continental lithosphere of New Zealand. Science 286, 516–519 (1999).

    Article  Google Scholar 

  43. Block, L. & Royden, L. H. Core complex geometries and regional scale flow in the lower crust. Tectonics 9, 557–567 (1990).

    Article  Google Scholar 

  44. Mainprice, D. & Nicolas, A. Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust. J. Struct. Geol. 11, 175–189 (1989).

    Article  Google Scholar 

  45. Papazachos, B. C., Karakostas, V. G., Papazachos, C. B. & Scordilis, E. M. The geometry of the Wadati–Benioff zone and the lithospheric kinematics in the Hellenic arc. Tectonophysics 319, 275–300 (2000).

    Article  Google Scholar 

  46. Meier, T. et al. in The Geodynamics of the Aegean and Anatolia 291 (eds Taymaz, T., Yilmaz, Y. & Dilek, Y.) 183–199 (Spec. Publ. Geol.Soc. Lond., 2007).

    Google Scholar 

  47. Endrun, B., Ceranna, L., Meier, T., Bohnhoff, M. & Harjes, H-P. Modeling the influence of Moho topography on receiver functions: A case study from the central Hellenic subduction zone. Geophys. Res. Lett. 32, L12311 (2005).

    Article  Google Scholar 

  48. Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917 (2000).

    Article  Google Scholar 

  49. Piromallo, C. & Morelli, A. P wave tomography of the mantle under the Alpine–Mediterranean area. J. Geophys. Res. 108, 2065 (2003).

    Article  Google Scholar 

  50. Lebedev, S. & van der Hilst, R. D. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int. 173, 505–518 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation within Collaborative Research Centre SFB 526 ‘Rheology of the Earth’ and by Science Foundation Ireland (grant 08/RFP/GE01704). Earthquake data were provided by NOA, Greece (thanks to G. Stavrakakis), and GEOFON, GFZ Potsdam. We thank GIPP, GFZ Potsdam, for supplying seismic acquisition systems for CYCNET. The authors acknowledge D. Hatzfeld for contributing a digital version of his SKS data set, E. Sandvol for providing the results of the Pn tomography by Al-Latzki et al. (Supplementary Information), and T. Becker for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.E. performed measurements, computed and analysed seismic models, and wrote the first draft. S.L. and T.M. contributed software and revised the manuscript extensively. T.M. initiated the study. T.M. and W.F. secured primary funding for this work. C.T. contributed tectonics and geodynamics expertise and implemented Fig. 4; all authors contributed ideas and discussed the results and implications.

Corresponding author

Correspondence to Brigitte Endrun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endrun, B., Lebedev, S., Meier, T. et al. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geosci 4, 203–207 (2011). https://doi.org/10.1038/ngeo1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing