Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits


The Eocene epoch in the Great Basin of western North America was a period of profuse magmatism and hydrothermal activity. During that period, the Carlin-type gold deposits in Nevada were produced, Earth’s second largest concentration of gold after deposits in South Africa. The characteristics of the Carlin-type deposits have been documented, but a widely acceptable explanation for their genesis is outstanding. Here we integrate microanalyses of ore minerals, experimental data that describe metal partitioning, and published age and isotopic data, to suggest that the gold is sourced from magma. We relate gold deposition to a change from shallow subduction to renewed magmatism and the onset of extension. We propose that upwelling asthenosphere impinged on a strongly modified subcontinental lithospheric mantle, generating magmas that released gold-bearing fluids at depths of 10 to 12 km. The rising aqueous fluids with elevated hydrogen sulphide concentrations and a high ratio of gold to copper underwent phase changes and mixed with meteoric water. Within a few kilometres of the surface, the fluids dissolved and sulphidized carbonate wall rocks, leading to deposition of gold-bearing pyrite. We conclude that the large number and size of Carlin-type deposits in Nevada is the result of an unusual convergence of a specific geologic setting, together with a tectonic trigger that led to extremely efficient transport and deposition of gold.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Locations of CTGDs in northern Nevada.
Figure 2: Schematic cross-section from mantle to the surface (looking east).
Figure 3: Phase diagram of the NaCl–H2O system.
Figure 4: Images and analyses of ore-stage pyrite.


  1. 1

    Cline, J. S., Hofstra, A. H., Muntean, J. L., Tosdal, R. M. & Hickey, K. A. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 451–484 (Society of Economic Geologists, 2005).

    Google Scholar 

  2. 2

    Heitt, D. G., Dunbar, W. W., Thompson, T. B. & Jackson, R. G. Geology and geochemistry of the Deep Star gold deposit, Carlin trend, Nevada. Econ. Geol. 98, 1107–1136 (2003).

    Article  Google Scholar 

  3. 3

    Ressel, M. W. & Henry, C. D. Igneous geology of the Carlin trend, Nevada: Development of the Eocene plutonic complex and significance for Carlin-type gold deposits. Econ. Geol. 101, 347–383 (2006).

    Article  Google Scholar 

  4. 4

    John, D. A., Henry, C. D. & Colgan, J. P. Magmatic and tectonic evolution of the Caetano caldera, north-central Nevada: A tilted, mid-Tertiary eruptive center and source of the Caetano tuff. Geosphere 4, 75–106 (2008).

    Article  Google Scholar 

  5. 5

    Cline, J. S. & Hofstra, A. H. Ore fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. Eur. J. Mineral. 12, 195–212 (2000).

    Article  Google Scholar 

  6. 6

    Williams-Jones, A. E. & Heinrich, C. A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 100, 1287–1312 (2005).

    Article  Google Scholar 

  7. 7

    Simon, A. C. et al. Gold partitioning in melt-vapor-brine systems. Geochim. Cosmochim. Acta 69, 3321–3335 (2005).

    Article  Google Scholar 

  8. 8

    Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. Copper partitioning in a melt-vapor-brine-magnetite–pyrrhotite assemblage. Geochim. Cosmochim. Acta 70, 5583–5600 (2006).

    Article  Google Scholar 

  9. 9

    Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochim. Cosmochim. Acta 71, 1764–1782 (2007).

    Article  Google Scholar 

  10. 10

    Tosdal, R. M., Wooden, J. L. & Kistler, R. W. in Geology and Ore Deposits 2000: The Great Basin and Beyond (eds Cluer, J. K., Price, J. G., Struhsacker, E. M., Hardyman, R. F. & Morris, C. L.) 451–466 (Geological Societyof Nevada, 2000).

    Google Scholar 

  11. 11

    Marshak, S., Karlstrom, K. & Timmons, J. M. Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology 28, 735–738 (2000).

    Article  Google Scholar 

  12. 12

    Emsbo, P., Groves, D. I., Hofstra, A. H. & Bierlein, F. P. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary. Min. Dep. 41, 517–525 (2006).

    Article  Google Scholar 

  13. 13

    Muntean, J. L., Coward, M. P. & Tarnocai, C. A. in Deformation of the Continental Crust: The Legacy of Mike Coward 272 (eds Reis, A. C., Butler, R. W. H. & Graham, R. H.) 571–587 (Spec. Publ. Geol. Soc. Lond., 2007).

    Google Scholar 

  14. 14

    Coney, P. J. & Reynolds, S. J. Cordilleran Benioff zones. Nature 270, 403–406 (1977).

    Article  Google Scholar 

  15. 15

    Iwamori, H. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett. 160, 65–80 (1998).

    Article  Google Scholar 

  16. 16

    Candela, P. A. & Piccoli, P. M. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 25–37 (Society of Economic Geologists, 2005).

    Google Scholar 

  17. 17

    Noll, P. D., Newsom, H. W., Leeman, W. P. & Ryan, J. G. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron. Geochim. Cosmochim. Acta 60, 587–611 (1996).

    Article  Google Scholar 

  18. 18

    Hattori, K. H. & Guillot, S. Volcanic fronts form as a consequence of serpentine dehydration in the forearc mantle wedge. Geology 31, 525–528 (2003).

    Article  Google Scholar 

  19. 19

    Richards, J. P. Postsubduction porphyry Cu–Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37, 247–250 (2009).

    Article  Google Scholar 

  20. 20

    Humphreys, E. et al. How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int. Geol. Rev. 45, 575–595 (2003).

    Article  Google Scholar 

  21. 21

    Humphreys, E. D. Post-Laramide removal of the Farallon Slab, western United States. Geology 23, 987–990 (1995).

    Article  Google Scholar 

  22. 22

    Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009).

    Article  Google Scholar 

  23. 23

    Gans, P. B., Mahood, G. A. & Schermer, E. Synextensional magmatism in the Basin and Range province: A case study from the eastern Great Basin. (Special Paper Vol. 233, Geological Society of America 1989).

  24. 24

    Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  25. 25

    Redmond, P. B., Einaudi, M. T., Inan, E. E., Landtwing, M. R. & Heinrich, C. A. Copper deposition from fluid cooling in intrusion-centered system: New insights from the Bingham porphyry ore deposit, Utah. Geology 32, 217–220 (2004).

    Article  Google Scholar 

  26. 26

    Barnes, C. G., Burton, B. R., Burling, T. C., Wright, J. E. & Karlsson, H. R. Petrology and geochemistry of the late Eocene Harrison Pass pluton, Ruby Mountains core complex, northeastern Nevada. J. Petrol. 42, 901–929 (2001).

    Article  Google Scholar 

  27. 27

    Henry, C. D. Ash-flow tuffs and paleovalleys in northeastern Nevada: Implications for Eocene paleogeography and extension in the Sevier hinterland, northern Great Basin. Geosphere 4, 1–35 (2008).

    Article  Google Scholar 

  28. 28

    Driesner, T. & Heinrich, C. A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl . Geochim. Cosmochim. Acta 71, 4880–4901 (2007).

    Article  Google Scholar 

  29. 29

    Seo, J. H., Guillong, M. & Heinrich, C. A. The role of sulfur in the formation of magmatic-hydrothermal copper–gold deposits. Earth Planet. Sci. Lett. 282, 323–328 (2009).

    Article  Google Scholar 

  30. 30

    Heinrich, C. A., Driesner, T., Stefánsson, A. & Seward, T. M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 32, 761–764 (2004).

    Article  Google Scholar 

  31. 31

    Henley, R. W. & McNabb, A. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ. Geol. 73, 1–20 (1978).

    Article  Google Scholar 

  32. 32

    Giggenbach, W. F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ. Geol. 87, 1927–1944 (1992).

    Google Scholar 

  33. 33

    Heinrich, C. A. The chemistry of hydrothermal tin-(-tungsten) ore deposition. Econ. Geol. 85, 457–481 (1990).

    Article  Google Scholar 

  34. 34

    Simon, G., Kesler, S. E. & Chryssoulis, S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits. Econ. Geol. 94, 405–422 (1999).

    Article  Google Scholar 

  35. 35

    Reich, M. et al. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 69, 2781–2796 (2005).

    Article  Google Scholar 

  36. 36

    Hofstra, A. H. et al. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada. Geology 19, 36–40 (1991).

    Article  Google Scholar 

  37. 37

    Barker, S. L. et al. Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements and sulfur isotopes in pyrite from Carlin-type gold deposits. Econ. Geol. 104, 897–904 (2009).

    Article  Google Scholar 

  38. 38

    Stenger, D. P., Kesler, S. E., Peltonen, D. R. & Tapper, C. J. Deposition of gold in Carlin-type deposits: The role of sulfidation and decarbonation at Twin Creeks, Nevada. Econ. Geol. 93, 210–215 (1998).

    Article  Google Scholar 

  39. 39

    Widler, A. M. & Seward, T. M. The adsorption of gold(I) hydrosulfide complexes by iron sulphide surfaces. Geochim. Cosmochim. Acta 66, 383–402 (2002).

    Article  Google Scholar 

  40. 40

    Robert, F., Poulsen, K. H., Cassidy, K. F. & Hodgson, C. J. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 1001–1033 (Society ofEconomic Geologists, 2005).

    Google Scholar 

Download references


This work was supported by the National Science Foundation (EAR awards 0635657 to J.L.M., 0635658 to J.S.C. and 0609550 to A.C.S.), the US Geological Survey’s Mineral Resources External Research Program, Placer Dome Exploration and Barrick Gold Corporation.

Author information




J.L.M., J.S.C., A.C.S. and A.A.L. conceived the model for the CTGDs. J.L.M. took the lead in preparation of the manuscript and figures and contributed Supplementary Data S1. J.S.C. and A.A.L. contributed Supplementary Data S2 and A.C.S. contributed Supplementary Data S3.

Corresponding author

Correspondence to John L. Muntean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 743 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muntean, J., Cline, J., Simon, A. et al. Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits. Nature Geosci 4, 122–127 (2011).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing