Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of manganese oxides by bacterially generated superoxide

Abstract

Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms1,2,3. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria—Roseobacter sp. AzwK-3b—to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ROS superoxide mediates Mn(II) oxidation.
Figure 2: Mn(III) is an intermediate of the Mn(II) oxidation pathway.
Figure 3: Cu slows oxidation of Mn(II) by R. AzwK-3b.
Figure 4: NADH is a substrate used in the enzymatic production of superoxide.

Similar content being viewed by others

References

  1. Nealson, K. H., Tebo, B. M. & Rosson, R. A. Occurrence and mechanisms of microbial oxidation of manganese. Adv. Appl. Microbiol. 33, 279–318 (1988).

    Article  Google Scholar 

  2. Tebo, B. M., Johnson, H. A., McCarthy, J. K. & Templeton, A. S. Geomicrobiology of manganese(II) oxidation. Trends Microbiol. 13, 421–428 (2005).

    Article  Google Scholar 

  3. Tebo, B. M., Ghiorse, W. C., vanWaasbergen, L. G., Siering, P. L. & Caspi, R. Reviews in Mineralogy Vol. 35, 225–266 (The Mineralogical Society ofAmerica, 1997).

    Google Scholar 

  4. Diem, D. & Stumm, W. Is dissolved Mn(II) being oxidized by O2 in absence of Mn-bacteria or surface catalysts. Geochim. Et Cosmochim. Acta 48, 1571–1573 (1984).

    Article  Google Scholar 

  5. Davies, S. H. R. & Morgan, J. J. Manganese(II) oxidation-kinetics on metal-oxide surfaces. J. Colloid Interface Sci. 129, 63–77 (1989).

    Article  Google Scholar 

  6. Gonzalez, J. M. & Moran, M. A. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63, 4237–4242 (1997).

    Google Scholar 

  7. Templeton, A. S., Staudigel, H. & Tebo, B. M. Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol. J. 22, 127–139 (2005).

    Article  Google Scholar 

  8. Buchan, A., Gonzalez, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).

    Article  Google Scholar 

  9. Godrant, A., Rose, A. L., Sarthou, G. & Waite, T. D. New method for the determination of extracellular production of superoxide by marine phytoplankton using the chemiluminescence probes MCLA and red-CLA. Limnol. Oceanogr.-Meth. 7, 682–692 (2009).

    Article  Google Scholar 

  10. Archibald, F. S. & Fridovich, I. The scavenging of superoxide radical by manganous complexes: In vitro. Arch. Biochem. Biophys. 214, 452–463 (1982).

    Article  Google Scholar 

  11. Barnese, K., Gralla, E. B., Cabelli, D. E. & Valentine, J. S. Manganous phosphate acts as a superoxide dismutase. J. Am. Chem. Soc. 130, 4604 (2008).

    Article  Google Scholar 

  12. Hansel, C. M. & Francis, C. A. Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-like bacterium. Appl. Environ. Microbiol. 72, 3543–3549 (2006).

    Article  Google Scholar 

  13. Webb, S. M., Dick, G. J., Bargar, J. R. & Tebo, B. M. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc. Natl Acad. Sci. USA 102, 5558–5563 (2005).

    Google Scholar 

  14. Brouwers, G. J. et al. Stimulation of Mn(II) oxidation in Leptothrix discophora SS-1 by Cu2+ and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol. J. 17, 25–33 (2000).

    Article  Google Scholar 

  15. Zafiriou, O. C., Voelker, B. M. & Sedlak, D. L. Chemistry of the superoxide radical (O2) in seawater: Reactions with inorganic copper complexes. J. Phys. Chem. A 102, 5693–5700 (1998).

    Article  Google Scholar 

  16. Voelker, B. M., Sedlak, D. L. & Zafiriou, O. C. Chemistry of superoxide radical in seawater: Reactions with organic Cu complexes. Environ. Sci. Technol. 34, 1036–1042 (2000).

    Article  Google Scholar 

  17. Gonzalez-Gil, G., Jansen, S., Zandvoort, M. H. & van Leeuwen, H. P. Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol. Bioeng. 82, 134–142 (2003).

    Article  Google Scholar 

  18. Bedard, K., Lardy, B. & Krause, K. H. NOX family NADPH oxidases: Not just in mammals. Biochimie 89, 1107–1112 (2007).

    Article  Google Scholar 

  19. Huycke, M. M. et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol. 42, 729–740 (2001).

    Article  Google Scholar 

  20. Lin, P. C., Turk, K., Hase, C. C., Fritz, G. & Steuber, J. Quinone reduction by the Na+-translocating NADH dehydrogenase promotes extracellular superoxide production in Vibrio cholerae. J. Bacteriol. 189, 3902–3908 (2007).

    Article  Google Scholar 

  21. Korshunov, S. & Imlay, J. A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334 (2006).

    Article  Google Scholar 

  22. Johnson, H. A. & Tebo, B. M. In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Arch. Microbiol. 189, 59–69 (2008).

    Article  Google Scholar 

  23. El Gheriany, I. A. et al. Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Appl. Environment. Microbiol. 75, 1229–1235 (2009).

    Article  Google Scholar 

  24. Sunda, W. G. & Huntsman, S. A. Photoreduction of manganese oxides in seawater. Mar. Chem. 46, 133–152 (1994).

    Article  Google Scholar 

  25. Voelker, B. M. & Sedlak, D. L. Iron reduction by photoproduced superoxide in seawater. Mar. Chem. 50, 93–102 (1995).

    Article  Google Scholar 

  26. Vermilyea, A. W., Hansard, S. P. & Voelker, B. M. Dark production of hydrogen peroxide in the Gulf of Alaska. Limnol. Oceanogr. 55, 580–588 (2010).

    Article  Google Scholar 

  27. Rose, A. L., Webb, E. A., Waite, T. D. & Moffett, J. W. Measurement and implications of nonphotochemically generated superoxide in the equatorial Pacific Ocean. Environ. Sci. Technol. 42, 2387–2393 (2008).

    Article  Google Scholar 

  28. Kustka, A. B., Shaked, Y., Milligan, A. J., King, D. W. & Morel, F. M. M. Extracellular production of superoxide by marine diatoms: Contrasting effects on iron redox chemistry and bioavailability. Limnol. Oceanogr. 50, 1172–1180 (2005).

    Article  Google Scholar 

  29. Goldstein, S., Fridovich, I. & Czapski, G. Kinetic properties of Cu, Zn-superoxide dismutase as a function of metal content—order restored. Free Radical Biol. Med. 41, 937–941 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Knoll, D. Johnston and C. Santelli for helpful comments and discussions. This work was supported by the Geobiology and Low-Temperature Geochemistry Program at the National Science Foundation under grants EAR-0817653 and EAR-1024817/1025077 and by the Radcliffe Institute for Advanced Study at Harvard University.

Author information

Authors and Affiliations

Authors

Contributions

D.R.L. and C.M.H. designed experiments and analysed data. Experiments were conducted by D.R.L. and A.I.V-R. B.M.V. conducted model components and assisted in experimental interpretation. The manuscript was written by D.R.L. with contributions from C.M.H. and B.M.V.

Corresponding author

Correspondence to C. M. Hansel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Learman, D., Voelker, B., Vazquez-Rodriguez, A. et al. Formation of manganese oxides by bacterially generated superoxide. Nature Geosci 4, 95–98 (2011). https://doi.org/10.1038/ngeo1055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing