Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon


Water plays a critical role in the evolution of planetary bodies1, and determination of the amount and sources of lunar water has profound implications for our understanding of the history of the Earth–Moon system. During the Apollo programme, the lunar samples were found to be devoid of indigenous water2,3. The severe depletion of volatiles, including water, in lunar rock samples4 has long been seen as strong support for the theory that the Moon formed during a giant impact event5. Water has now been identified in lunar volcanic glasses6 and apatite7,8,9, but the sources of water to the Moon have not been determined. Here we report ion microprobe measurements of water and hydrogen isotopes in the hydrous mineral apatite, derived from crystalline lunar mare basalts and highlands rocks collected during the Apollo missions. We find significant water in apatite from both mare and highlands rocks, indicating a role for water during all phases of the Moon’s magmatic history. Variations of hydrogen isotope ratios in apatite suggest sources for water in lunar rocks could come from the lunar mantle, solar wind protons and comets. We conclude that a significant delivery of cometary water to the Earth–Moon system occurred shortly after the Moon-forming impact.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backscatter electron image and SCAPS 1H image of apatite grain 5 of 10044,12.
Figure 2: δD(‰) versus H2O (wt.%) of lunar apatite measured in this study.
Figure 3: δD plot of the solar system.


  1. Albaréde, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    Article  Google Scholar 

  2. Epstein, S. & Taylor, H. P. Jr Proc. 4th Lunar Sci. Conf., Vol. 2, 1559–1575 (Pergamon, 1973).

    Google Scholar 

  3. Epstein, S. & Taylor, H. P. Jr Proc. 5th Lunar Sci. Conf., Vol. 2, 1839–1854 (Pergamon, 1974).

    Google Scholar 

  4. Taylor, S. R., Taylor, G. J. & Taylor, L. A. The Moon: A Taylor perspective. Geochim. Cosmochim. Acta 70, 5904–5918 (2006).

    Article  Google Scholar 

  5. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  Google Scholar 

  6. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article  Google Scholar 

  7. McCubbin, F. M. et al. Nominally hydrous magmatism on the Moon. Proc. Natl Acad. Sci. 27, 11223–11228 (2010).

    Article  Google Scholar 

  8. McCubbin, F. M. et al. Detection of structurally bound hydroxyl in fluorapatite from Apollo mare basalt 15058,128 using TOF-SIMS. Am. Mineral. 95, 1141–1150 (2010).

    Article  Google Scholar 

  9. Boyce, J. W. et al. Lunar apatite with terrestrial volatile abundances. Nature 466, 466–469 (2010).

    Article  Google Scholar 

  10. Friedman, I., O’Neil, J. R., Adami, L. H., Gleason, J. D. & Hardcastle, K. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material. Science 167, 538–540 (1970).

    Article  Google Scholar 

  11. Taylor, L. A., Mao, H. K. & Bell, P. M. Proc. 4th Lunar Sci. Conf., Vol. 1, 829–839 (Pergamon, 1973).

    Google Scholar 

  12. Sheppard, S. M. F. in Stable Isotopes in High Temperature Geological Processes (eds Valley, J. W., Taylor, H. P. Jr & O’Neil, J. R.) 165–183 (Reviews in Mineralogy 16, Mineralogical Society of America, 1986).

    Book  Google Scholar 

  13. Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).

    Article  Google Scholar 

  14. Robert, F. in Meteorites and the Early Solar System II (eds Lauretta, D. & McSween, H. Y. Jr) 341–352 (Univ. Arizona Press, 2006).

    Google Scholar 

  15. Watson, L. L., Hutcheon, I. D., Epstein, S. & Stolper, E. M. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994).

    Article  Google Scholar 

  16. Greenwood, J. P., Itoh, S., Sakamoto, N., Vicenzi, E. P. & Yurimoto, H. Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35, L05203 (2008).

    Article  Google Scholar 

  17. Papike, J. J., Ryder, G. & Shearer, C. K. in Planetary Materials (ed. Papike, J. J.) 5-01-5-234 (Reviews in Mineralogy 36, Mineralogical Society of America,1998).

    Book  Google Scholar 

  18. Deloule, E., Albaréde, F. & Sheppard, S. M. F. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543–555 (1991).

    Article  Google Scholar 

  19. Harford, C. L. & Sparks, R. S. J. Recent remobilisation of shallow-level intrusions on Montserrat revealed by hydrogen isotope composition of amphiboles. Earth Planet. Sci. Lett. 185, 285–297 (2001).

    Article  Google Scholar 

  20. Rhodes, J. M., Blanchard, D. P., Dungan, M. A., Brannon, J. C. & Rodgers, K. V. Proc. Lunar Sci. Conf. 8th 1305–1338 (Pergamon, 1977).

    Google Scholar 

  21. Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).

    Article  Google Scholar 

  22. Shearer, C. K. & Papike, J. J. Magmatic evolution of the Moon. Am. Mineral. 84, 1469–1494 (1998).

    Article  Google Scholar 

  23. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  Google Scholar 

  24. Taylor, L. A., Patchen, A., Mayne, R. G. & Taylor, D-H. The most reduced rock from the moon, Apollo 14 basalt 14053: Its unique features and their origin. Am. Mineral. 89, 1617–1624 (2004).

    Article  Google Scholar 

  25. Ong, L., Asphaug, E. I., Korycansky, D. & Coker, R. F. Volatile retention from cometary impacts on the Moon. Icarus 207, 578–589 (2010).

    Article  Google Scholar 

  26. Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the Moon: Deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000).

    Article  Google Scholar 

  27. Kokubu, N., Mayeda, T. & Urey, H. C. Deuterium content of minerals, rocks, and liquid inclusions from rocks. Geochim. Cosmochim. Acta 21, 247–256 (1961).

    Article  Google Scholar 

Download references


We thank F. M. McCubbin and F. Robert for constructive reviews, M. Gilmore and W. Herbst for comments on an earlier version of this manuscript, M. Rutherford and A. Basilevsky for discussion, G. Olack and J. Eckert for technical assistance, and Wesleyan University (J.P.G.) and Monkasho (H.Y.) for support.

Author information

Authors and Affiliations



J.P.G., S.I., N.S. and H.Y. carried out all ion microscopy. J.P.G. conducted all electron microscopy and measurements of water and D/H in apatite standards using continuous-flow mass spectrometry. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to James P. Greenwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 997 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Greenwood, J., Itoh, S., Sakamoto, N. et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geosci 4, 79–82 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing