Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The many surface expressions of mantle dynamics

An Author Correction to this article was published on 10 May 2022

This article has been updated

Abstract

Plate tectonic theory suggests that present-day topography can be explained by the repeated interactions between the tectonic plates moving along Earth's surface. However, mounting evidence indicates that a significant proportion of Earth's topography results from the viscous stresses created by flow within the underlying mantle, rather than by the moving plates. This dynamic topography is transient, varying as mantle flow changes, and is characterized by small amplitudes and long wavelengths. It is therefore often hidden by or confused with the more obvious topographic anomalies resulting from horizontal tectonic movements. However, dynamic topography can influence surface processes and thus enter the geological record; it has, for example, played a role in the establishment of Amazon drainage patterns. In turn, surface processes such as the erosion of topographical anomalies could affect mantle flow. This emerging view of dynamic topography suggests that the concept of plate tectonics as the driver of surface deformation needs to be extended to include the vertical coupling between the mantle and the surface. Unravelling this coupling back in time with the help of models and the geological record can potentially provide unprecedented insights into past mantle dynamics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dynamic topography.
Figure 2: Estimates of present-day dynamic topography.
Figure 3: Components needed to compute past dynamic topography.
Figure 4: The advection of present-day mantle-flow models backwards in time.
Figure 5: Example of computed dynamic topography and its comparison to the geological record.
Figure 6: How eroding dynamic topography can affect mantle flow.
Figure 7: Earth's erosion rate compared with mantle anomalies' rising velocity.

Change history

References

  1. Hager, B., Clayton, C., Richards, M., Comer, R. & Dziewonski, A. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Article  Google Scholar 

  2. Gurnis, M., Mitrovica, J., Ritsema, J. & van Heijst, H-J. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochem. Geophys. Geosyst. 1, 1020 (2000).

    Article  Google Scholar 

  3. Lowry, A., Ribe, N. & Smith, R. Dynamic elevation of the Cordillera, western United States. J. Geophys. Res. 105, 23371–23390 (2000).

    Article  Google Scholar 

  4. Conrad, C., Lithgow-Bertelloni, C. & Louden, K. Iceland, the Farallon slab, and dynamic topography of the North Atlantic. Geology 32, 177–180 (2004).

    Article  Google Scholar 

  5. Guillou-Frotier, L., Burov, E., Nehlig, P. & Wyns, R. Deciphering plume–lithosphere interactions beneath Europe from topographic signatures. Glob. Planet. Change 58, 119–140 (2007).

    Article  Google Scholar 

  6. Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth's mantle, phase boundary topography and dynamic topography at the Earth's surface. Phys. Earth Planet. Inter. 164, 2–20 (2007).

    Article  Google Scholar 

  7. Adam, C. & Vidal, V. Mantle flow drives the subsidence of oceanic plates. Science 328, 83–85 (2010).

    Article  Google Scholar 

  8. Hillier, J. Subsidence of normal seafloor: observations do indicate flattening. J. Geophys. Res. 115, B03102 (2010).

    Google Scholar 

  9. Winterbourne, J., Crossby, A. & White, N. Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margins. Earth Planet. Sci. Lett. 287, 137–151 (2009).

    Article  Google Scholar 

  10. Moucha, R. et al. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271, 101–108 (2008).

    Article  Google Scholar 

  11. Mitrovica, J., Beaumont, C. & Jarvis, G. Tilting of continental interiors by the dynamical effects of subduction. Tectonics 8, 1079–1094 (1989).

    Article  Google Scholar 

  12. Gurnis, M. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature 364, 589–593 (1993).

    Article  Google Scholar 

  13. Spasojevic, S., Liu, L., Gurnis, M. & Muller, R. The case for dynamic subsidence of the US east coast since the Eocene. Geophys. Res. Lett. 35, L08305 (2008).

    Article  Google Scholar 

  14. DiCaprio, L., Gurnis, M. & Muller, R. Long-wavelength tilting of the Australian continent since the Late Cretaceous. Earth Planet. Sci. Lett. 278, 175–185 (2009).

    Article  Google Scholar 

  15. Husson, L. Dynamic topography above retreating subduction zones. Geology 34, 741–744 (2006).

    Article  Google Scholar 

  16. Artyushkov, E. & Hofmann, A. Neotectonic crustal uplift on the continents and its possible mechanisms: the case of southern Africa. Surv. Geophys. 18, 369–415 (1998).

    Article  Google Scholar 

  17. Burov, E. & Guillou-Frottier, L. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys. J. Int. 161, 469–490 (2005).

    Article  Google Scholar 

  18. Lithgow-Bertelloni, C. & Silver, P. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272 (1998).

    Article  Google Scholar 

  19. Guillaume, B., Martinod, J., Husson, L., Roddaz, M. & Riquelme, R. Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? Tectonics 28, TC2009 (2009).

    Article  Google Scholar 

  20. Sutherland, R., Spasojevic, S. & Gurnis, M. Mantle upwelling after Gondwana subduction death explains anomalous topography and subsidence histories of eastern New Zealand and West Antarctica. Geology 38, 155–158 (2010).

    Article  Google Scholar 

  21. Muller, R., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  22. Conrad, C. & Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1, 110–120 (2009).

    Article  Google Scholar 

  23. Lovell, B. A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. J. Geol. Soc. Lond. 167, 637–648 (2010).

    Article  Google Scholar 

  24. Petersen, K., Nielsen, S., Clausen, O., Stephenson, R. & Gerya, T. Small-scale mantle convection produces stratigraphic sequences in sedimentary basins. Science 329, 827–830 (2010).

    Article  Google Scholar 

  25. Gallagher, K. & Lambeck, K. Subsidence, sedimentation and sea-level changes in the Eromanga Basin, Australia. Basin Res. 2, 115–131 (1989).

    Article  Google Scholar 

  26. Gurnis, M., Muller, R. & Moresi, L. Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science 279, 1499–1504 (1998).

    Article  Google Scholar 

  27. Mitrovica, J., Pysklywec, R. & Beaumont, C. The Devonian to Permian tilting of the Russion platform: an example of subduction controlled long-wavelength tilting of continents. J. Geodyn. 22, 79–96 (1996).

    Article  Google Scholar 

  28. Pysklywec, R. & Mitrovica, J. The role of subduction-induced subsidence in the evolution of the Karoo Basin. J. Geol. 107, 155–164 (1999).

    Article  Google Scholar 

  29. Spasojevic, S., Liu, L. & Gurnis, M. Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem. Geophys. Geosyst. 10, Q05W02 (2009).

    Article  Google Scholar 

  30. Heine, C., Muller, R., Steinberger, B. & DiCaprio, L. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483, 135–150 (2010).

    Article  Google Scholar 

  31. Gallagher, K. & Brown, R. The onshore record of passive margin evolution. J. Geol. Soc. Lond. 154, 451–457 (1997).

    Article  Google Scholar 

  32. Gallagher, K. & Brown, R. in The Oil and Gas Habitats of the South Atlantic (eds Cameron, N., Bate, R. & Clure, V.) 41–53 (Geological Society of London Special Publication Vol. 153, 1999).

    Google Scholar 

  33. Walford, H. & White, N. Constraining uplift and denudation of west African continental margin by inversion of stacking velocity data. J. Geophys. Res. 110, B04403 (2005).

    Google Scholar 

  34. Al-Hajri, Y., White, N. & Fishwick, S. Scales of transient convective support beneath Africa. Geology 37, 883–886 (2009).

    Article  Google Scholar 

  35. Rudge, J., Shaw Champion, M., White, N., McKenzie, D. & Lovell, J. A plume model of transient diachronous uplift at the Earth's surface. Earth Planet. Sci. Lett. 267, 146–160 (2008).

    Article  Google Scholar 

  36. Shaw Champion, M., White, N., Jones, S. & Lovell, J. Quantifying transient mantle convective uplift: an example from the Faroe–Shetland basin. Tectonics 27, TC1002 (2008).

    Google Scholar 

  37. Heine, C., Muller, R., Steinberger, B. & Torsvik, T. Subsidence in intracontinental basins due to dynamic topography. Phys. Earth Planet. Inter. 171, 252–264 (2008).

    Article  Google Scholar 

  38. Downey, N. & Gurnis, M. Instantaneous dynamics of the cratonic Congo basin. J. Geophys. Res. 114, B06401 (2009).

    Google Scholar 

  39. DiCaprio, L., Muller, R. & Gurnis, M. A dynamic process for drowning carbonate reefs on the northeastern Australian margin. Geology 38, 11–14 (2010).

    Article  Google Scholar 

  40. Moucha, R. et al. Deep mantle forces and the uplift of the Colorado Plateau. Geophys. Res. Lett. 36, L19310 (2009).

    Article  Google Scholar 

  41. Forte, A., Moucha, R., Simmons, N., Grand, S. & Mitrovica, J. Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophysics 481, 3–15 (2010).

    Article  Google Scholar 

  42. Leng, W. & Zhong, S. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth Planet. Sci. Lett. 291, 207–214 (2010).

    Article  Google Scholar 

  43. Le Pourhiet, L., Gurnis, M. & Saleeby, J. Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension. Earth Planet. Sci. Lett. 251, 104–119 (2006).

    Article  Google Scholar 

  44. Conrad, C. & Gurnis, M. Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochem. Geophys. Geosyst. 4, 1031 (2003).

    Article  Google Scholar 

  45. Liu, L., Spasojevic, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008).

    Article  Google Scholar 

  46. Grand, S. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A 360, 2475–2491 (2002).

    Article  Google Scholar 

  47. Li, C., van der Hilst, R., Engdahl, E. & Burdick, S. A new global model for P wave speed variations in Earth's mantle. Geochem. Geophys. Geosyst. 9, Q05018 (2008).

    Google Scholar 

  48. Burdick, S. et al. Model update December 2008: upper mantle heterogeneity beneath North America from P-wave travel time tomography with global and USArray transportable array data. Seismol. Res. Lett. 80, 638–645 (2008).

    Article  Google Scholar 

  49. Rawlinson, N., Pozgay, S. & Fishwick, S. Seismic tomography: a window into deep Earth. Phys. Earth Planet. Inter. 178, 101–135 (2009).

    Article  Google Scholar 

  50. Karato, S.-I. & Karki, B. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res. 106, 21771–21784 (2001).

    Article  Google Scholar 

  51. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals. Part 1: Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article  Google Scholar 

  52. Simmons, N., Forte, A. & Grand, S. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int. 177, 1284–1304 (2009).

    Article  Google Scholar 

  53. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850–1852 (2002).

    Article  Google Scholar 

  54. Behn, M., Conrad, C. & Silver, P. Detection of upper mantle flow associated with the African superplume. Earth Planet. Sci. Lett. 224, 259–274 (2004).

    Article  Google Scholar 

  55. Simmons, N., Forte, A. & Grand, S. Thermomechanical structure and dynamics of the African super-plume. Geophys. Res. Lett. 34, L02301 (2007).

    Article  Google Scholar 

  56. Forte, A. in Treatise of Geophysics (eds Romanovicz, B. & Dziewonski, A.) 805–854 (GEOTOP Publication Vol. 1, 2007).

    Book  Google Scholar 

  57. Tan, E., Choi, E., Thoutireddy, P., Gurnis, M. & Aivazis, M. Geoframework: coupling multiple models of mantle convection within a computational framework. Geochem, Geophys. Geosyst. 7, Q06001 (2006).

    Article  Google Scholar 

  58. Moucha, R., Forte, A., Mitrovica, J. & Daradich, A. Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models. Geophys. J. Int. 169, 113–135 (2007).

    Article  Google Scholar 

  59. Bunge, H.-P., Hagelberg, C. & Travis, B. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152, 280–301 (2003).

    Article  Google Scholar 

  60. Liu, L. & Gurnis, M. Dynamic subsidence and uplift of the Colorado Plateau. Geology 38, 663–666 (2010).

    Article  Google Scholar 

  61. Shephard, G. E., Muller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nature Geosci. 3, 870–875 (2010).

    Article  Google Scholar 

  62. Shephard, G. et al. Contribution of mantle convection to shifting South American coastlines during the Tertiary. Eos 90, 52 (2009).

    Google Scholar 

  63. Wegmann, K. et al. Position of the Snake River watershed divide as an indicator of geodynamic processes in the greater Yellowstone region, western North America. Geosphere 3, 272–281 (2007).

    Article  Google Scholar 

  64. Beranek, L., Link, P. & Fanning, C. Miocene to Holocene landscape evolution of the western Snake River plain region, Idaho: using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot. Geol. Soc. Am. Bull. 118, 1027–1050 (2006).

    Article  Google Scholar 

  65. Karlstrom, K., Crow, R., Crossey, L., Coblentz, D. & van Wijk, J. Model for tectonically driven incision of the younger than 6 Ma Grand Canyon. Geology 36, 835–838 (2008).

    Article  Google Scholar 

  66. Sandiford, M. The tilting continent: a new constraint on the dynamic topographic field from Australia. Earth Planet. Sci. Lett. 261, 152–163 (2007).

    Article  Google Scholar 

  67. Finnegan, N. et al. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri Massif, Tibet. Geol. Soc. Am. Bull. 120, 142–155 (2008).

    Article  Google Scholar 

  68. Iaffaldano, G. & Bunge, H.-P. Strong plate coupling along the Nazca–South America convergent margin. Geology 36, 443–446 (2008).

    Article  Google Scholar 

  69. Stadler, G. et al. The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010).

    Article  Google Scholar 

  70. Jault, D. & Le Moul, J.-L. Core–mantle boundary shape: constraints inferred from the pressure torque acting between the core and the mantle. Geophys. J. Int. 101, 233–241 (2007).

    Article  Google Scholar 

  71. Simoes, M., Braun, J. & Bonnet, S. Continental-scale erosion and transport laws: A new approach to quantitatively investigate macroscale landscapes and associated sediment fluxes over the geological past. Geochem. Geophys. Geosyst. 11, Q09001 (2010).

    Article  Google Scholar 

  72. Langford, R., Wilford, G., Truswell, E. & Isern, A. Paleogeographic Atlas of Australia: Cainozoic (Australian Geological Survey Organization, 1995).

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank S. Braun, T. Gerya and B. Steinberger for constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary Information

Supplementary Information (PDF 188 kb)

Supplementary Movies

Supplementary Movie 1 (MOV 8828 kb)

Supplementary Movies

Supplementary Movie 2 (MOV 7708 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braun, J. The many surface expressions of mantle dynamics. Nature Geosci 3, 825–833 (2010). https://doi.org/10.1038/ngeo1020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1020

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing