Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread coupling between the rate and temperature sensitivity of organic matter decay

Abstract

Microbial breakdown of soil organic matter influences the potential for terrestrial ecosystems to sequester carbon, and the amount of carbon dioxide released to the atmosphere1,2,3,4. Predicting the sensitivity of microbial decomposition to temperature change is therefore critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming5. According to enzyme kinetics, the more biogeochemically recalcitrant the organic matter, the greater the temperature sensitivity of microbial respiration6,7,8. Here, we measured the temperature sensitivity of microbial respiration in soils from 28 sites in North America, ranging from Alaska to Puerto Rico, to test the generality of this principle. We show that the lower the rate of respiration at a reference temperature of 20 °C—and thus the more biogeochemically recalcitrant the organic matter—the greater the temperature sensitivity of soil respiration. We compiled our findings with those from other studies, encapsulating a range of environments, and show that this relationship holds across multiple scales and soil types. Although physico-chemical protection of soil organic matter and substrate availability will also influence the temperature sensitivity of decomposition, we suggest that biogeochemically recalcitrant organic matter will respond the most sensitively to anticipated warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in respiration rate and apparent activation energy over time for 28 soils.
Figure 2: General scaling of biochemical recalcitrance and temperature sensitivity of decomposition for plant and SOM.
Figure 3: Scaling of biochemical recalcitrance and temperature sensitivity of decomposition compared across contrasts.

Similar content being viewed by others

References

  1. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Solomon, S.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  Google Scholar 

  3. Trumbore, S. E. & Czimczik, C. I. Geology—An uncertain future for soil carbon. Science 321, 1455–1456 (2008).

    Article  Google Scholar 

  4. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Google Scholar 

  5. Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).

    Article  Google Scholar 

  6. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  Google Scholar 

  7. Bosatta, E. & Ågren, G. I. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 31, 1889–1891 (1999).

    Article  Google Scholar 

  8. Fierer, N., Craine, J., McLauchlan, K. & Schimel, J. Litter quality and the temperature sensitivity of decomposition. Ecology 85, 320–326 (2005).

    Article  Google Scholar 

  9. van der Meer, J. Metabolic theories in ecology. Trends Ecol. Evol. 21, 136–140 (2006).

    Article  Google Scholar 

  10. von Lützow, M. & Kögel-Knabner, I. Temperature sensitivity of soil organic matter decomposition—what do we know? Biol. Fertil. Soils 46, 1–5 (2009).

    Article  Google Scholar 

  11. Fang, C. M., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433, 57–59 (2005).

    Article  Google Scholar 

  12. Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    Article  Google Scholar 

  13. Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861 (2000).

    Article  Google Scholar 

  14. Conant, R. T. et al. Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 14, 868–877 (2008).

    Article  Google Scholar 

  15. Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 20, GB3026 (2006).

    Article  Google Scholar 

  16. Craine, J. M., Spurr, R., McLauchlan, K. K. & Fierer, N. Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol. Biochem. 42, 373–375 (2010).

    Article  Google Scholar 

  17. Conant, R. T. et al. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89, 2384–2391 (2008).

    Article  Google Scholar 

  18. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  Google Scholar 

  19. Reich, P. B., Tjoelker, M. G., Machado, J. L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    Article  Google Scholar 

  20. Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).

    Article  Google Scholar 

  21. Parton, W. et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364 (2007).

    Article  Google Scholar 

  22. West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).

    Article  Google Scholar 

  23. Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: A comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).

    Article  Google Scholar 

  24. McLauchlan, K. K. & Hobbie, S. E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68, 1616–1625 (2004).

    Article  Google Scholar 

  25. Janos, P. Separation methods in the chemistry of humic substances. J. Chromatogr. A. 983, 1–18 (2003).

    Article  Google Scholar 

  26. Thornley, J. H. M. & Cannell, M. G. R. Soil carbon storage response to temperature: An hypothesis. Ann. Bot. 87, 591–598 (2001).

    Article  Google Scholar 

  27. von Oepen, B., Kordel, W. & Klein, W. Sorption of nonpolar and polar compounds to soils—processes, measurements and experience with the applicability of the modified OECD-guideline-106. Chemosphere 22, 285–304 (1991).

    Article  Google Scholar 

  28. Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).

    Google Scholar 

  29. Robertson, G. P., Sollins, P., Ellis, B. G. & Lajtha, K. in Standard Soil Methods for Long-Term Ecological Research (eds Robertson, G. P., Coleman, D. C., Bledsoe, C. S. & Sollins, P.) 106–114 (Oxford Univ. Press, 1999).

    Google Scholar 

  30. Paul, E. A., Morris, S. J. & Bohm, S. in Assessment Methods for Soil Carbon (ed. Lal, R.) 193–206 (Lewis, 2001).

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Science Foundation (DEB-0816629). We thank the many volunteers who provided soil for the experiment and R. Monson, P. Reich, M. Post and J. Schimel for providing helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiment. J.M.C. and K.K.M. carried out the measurements. J.M.C. analysed the data and wrote the manuscript, to which all authors contributed discussion and text.

Corresponding author

Correspondence to Joseph M. Craine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craine, J., Fierer, N. & McLauchlan, K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geosci 3, 854–857 (2010). https://doi.org/10.1038/ngeo1009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1009

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology