Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistent earthquake clusters and gaps from slip on irregular faults


Earthquake-producing fault systems like the San Andreas fault in California show self-similar structural variation1; earthquakes cluster in space, leaving aseismic gaps between clusters. Whether gaps represent overdue earthquakes or signify diminished risk is a question with which seismic-hazard forecasters wrestle1,2,3,4,5. Here I use spectral analysis of the spatial distribution of seismicity along the San Andreas fault (for earthquakes that are at least 2 in magnitude), which reveals that it obeys a power-law relationship, indicative of self-similarity in clusters across a range of spatial scales. To determine whether the observed clustering of earthquakes is the result of a heterogeneous stress distribution, I use a finite-element method to simulate the motion of two rigid blocks past each other along a model fault surface that shows three-dimensional complexity on the basis of mapped traces of the San Andreas fault. The results indicate that long-term slip on the model fault generates a temporally stable, spatially variable distribution of stress that shows the same power-law relationship as the earthquake distribution. At the highest rates of San Andreas fault slip (40 mm yr−1), stress patterns produced are stable over a minimum of 25,000 years before the model fault system evolves into a new configuration. These results suggest that although gaps are not immune to rupture propagation they are less likely to be nucleation sites for earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: California seismicity.
Figure 2: Amplitude spectra of San Andreas fault seismicity.
Figure 3: Finite-element model of a rough fault surface.
Figure 4: Amplitude spectra of modelled differential stress distribution with observed San Andreas fault seismicity.


  1. Kagan, Y. Y. & Knopoff, L. Spatial distribution of earthquakes: The two-point correlation function. Geophys. J. R. Astron. Soc. 62, 303–320 (1980).

    Article  Google Scholar 

  2. McCann, W. R., Nishenko, S. P., Sykes, L. R. & Krause, J. Seismic gaps and plate tectonics: Seismic potential for major boundaries. Pure Appl. Geophys. 117, 1082–1147 (1979).

    Article  Google Scholar 

  3. Nishenko, S. P. Circum-Pacific seismic potential—1989–1999. Pure Appl. Geophys. 135, 169–259 (1991).

    Article  Google Scholar 

  4. Kagan, Y. Y. & Jackson, D. D. Seismic gap hypothesis: Ten years after. J. Geophys. Res. 96, 21419–21429 (1991).

    Article  Google Scholar 

  5. Rong, Y., Jackson, D. D. & Kagan, Y. Y. Sesimic gaps and earthquakes, J. Geophys. Res. 108 (2003) (doi:10.1029/2002JB002334).

  6. Kafka, A. L. & Ebel, J. E. Exaggerated claims about earthquake predictions. EOS 88, 1–6 (2007).

    Article  Google Scholar 

  7. Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).

    Article  Google Scholar 

  8. Percival, D. B. & Walden, A. T. Spectral Analysis for Physical Applications (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  9. Ghil, M. et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.1–3.41 (2002).

    Article  Google Scholar 

  10. Voss, R. F. & Clarke, J. “1/f noise” in music: Music from 1/f noise. J. Acoust. Soc. Am. 63, 258–263 (1978).

    Article  Google Scholar 

  11. Schroeder, M. Fractals, Chaos, Power Laws (W. H. Freeman and Company, New York, 1991).

    Google Scholar 

  12. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  13. Segall, P. & Pollard, D. D. Mechanics of discontinuous faults. J. Geophys. Res. 85, 4337–4350 (1980).

    Article  Google Scholar 

  14. Aviles, C. A., Scholz, C. H. & Boatwright, J. Fractal analysis applied to characteristic segments of the San Andreas fault. J. Geophys. Res. 92, 331–344 (1987).

    Article  Google Scholar 

  15. Okubo, P. G. & Aki, K. Fractal geometry in the San Andreas fault system. J. Geophys. Res. 92, 345–355 (1987).

    Article  Google Scholar 

  16. Power, W. L., Tullis, T. E., Brown, S., Boitnott, G. N. & Scholz, C. H. Roughness of natural fault surfaces. Geophys. Res. Lett. 14, 29–32 (1987).

    Article  Google Scholar 

  17. Kagan, Y. Y. Fractal dimension of brittle fracture. J. Nonlinear Sci. 1, 1–16 (1991).

    Article  Google Scholar 

  18. Marsan, D. Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model. J. Geophys. Res. 111 (2006) (doi:10.1029/2005JB004060).

    Article  Google Scholar 

  19. ANSYS Inc, Multiphysics Finite Element Software, Version 11 (Canonsburg, PA, 2007).

  20. Jennings, C. W. Fault activity map of California and adjacent areas with locations and ages of recent volcanic eruptions. California Division of Mines and Geology Data Map Series No. 6, 92 p., 2 plates, map scale 1:750,000 (1994).

  21. Brown, S. R. & Scholz, C. H. Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. 90, 2575–2582 (1985).

    Google Scholar 

  22. Sagy, A., Brodsky, E. E. & Axen, G. J. Evolution of fault-surface roughness with slip. Geology 35, 283–286 (2007).

    Article  Google Scholar 

  23. Brune, J. N., Henyey, T. & Roy, R. F. Heat flow, stress, and the rate of slip along the San Andreas fault, California. J. Geophys. Res. 74, 3821–3827 (1969).

    Article  Google Scholar 

  24. Zoback, M. D. et al. New evidence of the state of stress of the San Andreas fault system. Science 238, 1105–1111 (1987).

    Article  Google Scholar 

  25. Reasenberg, P. A. & Simpson, R. W. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255, 1687–1690 (1992).

    Article  Google Scholar 

  26. Geist, E. L. & Andrews, D. J. Slip rates on San Francisco Bay area faults from anelastic deformation of the continental lithosphere. J. Geophys. Res. 105, 25543–25552 (2000).

    Article  Google Scholar 

  27. Christensen, N. I. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996).

    Article  Google Scholar 

  28. Byerlee, J. D. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978).

    Article  Google Scholar 

  29. Birch, F. Compressibility; elastic constants. Geol. Soc. Am. Mem. 97, 97–173 (1966).

    Google Scholar 

  30. Weldon, R., Scharer, K., Fumal, T. & Biasi, G. Wrightwood and the earthquake cycle: What the long recurrence record tells us about how faults work. GSA Today 14, 4–10 (2004).

    Article  Google Scholar 

Download references


This work was inspired by a presentation on irregular faults by Jim Dieterich, research by David Marsan and a conversation with Larry Hartge.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tom Parsons.

Supplementary information

Supplementary Information

Supplementary figure 1 (PDF 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parsons, T. Persistent earthquake clusters and gaps from slip on irregular faults. Nature Geosci 1, 59–63 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing