Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change


The relationship between atmospheric carbon dioxide (CO2) and climate in the Quaternary period has been extensively investigated, but the role of CO2 in temperature changes during the rest of Earth’s history is less clear1. The range of geological evidence for cool periods during the high CO2 Mesozoic ‘greenhouse world’2,3 of high atmospheric CO2 concentrations, indicated by models4 and fossil soils5, has been particularly difficult to interpret. Here, we present high-resolution records of Mesozoic and early Cenozoic atmospheric CO2 concentrations from a combination of carbon-isotope analyses of non-vascular plant (bryophyte) fossils and theoretical modelling6,7. These records indicate that atmospheric CO2 rose from 420 p.p.m.v. in the Triassic period (about 200 million years ago) to a peak of 1,130 p.p.m.v. in the Middle Cretaceous (about 100 million years ago). Atmospheric CO2 levels then declined to 680 p.p.m.v. by 60 million years ago. Time-series comparisons show that these variations coincide with large Mesozoic climate shifts8,9,10, in contrast to earlier suggestions of climate–CO2 decoupling during this interval1. These reconstructed atmospheric CO2 concentrations drop below the simulated threshold for the initiation of glaciations11 on several occasions and therefore help explain the occurrence of cold intervals in a ‘greenhouse world’3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Atmospheric CO2 concentrations from fossil liverworts.
Figure 2: Evaluation of CO2 forcing with reconstructed changes in temperature (ΔT).
Figure 3: Comparison of proxy and geochemical model CO2 estimates.


  1. 1

    Veizer, J., Godderis, Y. & François, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000).

    Article  Google Scholar 

  2. 2

    Royer, D. L., Berner, R. A., Montanez, I., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate change. GSA Today 14, 4–10 (2004).

    Article  Google Scholar 

  3. 3

    Royer, D. L. CO2-forced climate thresholds during the Phanerozoic. Geochim. Cosmochim. Acta 70, 5665–5675 (2006).

    Article  Google Scholar 

  4. 4

    Berner, R. A. The Phanerozoic Carbon Cycle (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  5. 5

    Ekart, D. D., Cerling, T. E., Montañez, I. P. & Tabor, N. J. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827 (1999).

    Article  Google Scholar 

  6. 6

    Fletcher, B. J., Beerling, D. J., Brentnall, S. J. & Royer, D. L. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study. Global Biogeochem. Cycles 19, (2005) (doi:10.1029/2005GB002495).

  7. 7

    Fletcher, B. J., Brentnall, S. J., Quick, W. P. & Beerling, D. J. BRYOCARB: A process-based model of thallose liverwort carbon isotope fractionation in response to CO2, O2, light and temperature. Geochim. Cosmochim. Acta 70, 5676–5691 (2006).

    Article  Google Scholar 

  8. 8

    Dromart, G. et al. Ice age at the Middle-Late Jurassic transition? Earth Planet. Sci. Lett. 213, 205–220 (2003).

    Article  Google Scholar 

  9. 9

    Wilson, P. A., Norris, R. D. & Cooper, M. J. Testing the Cretaceous greenhouse hypothesis using glassy foramineral calcite from the core of the Turonian tropics on Demerara Rise. Geology 30, 607–610 (2002).

    Article  Google Scholar 

  10. 10

    Shouten, S. et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archeal membrane lipids. Geology 31, 1069–1072 (2003).

    Article  Google Scholar 

  11. 11

    DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003).

    Article  Google Scholar 

  12. 12

    Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).

    Article  Google Scholar 

  13. 13

    Kump, L. R. Reducing uncertainty about carbon dioxide as a climate driver. Nature 419, 188–190 (2002).

    Article  Google Scholar 

  14. 14

    Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6, 185–198 (1992).

    Article  Google Scholar 

  15. 15

    White, J. W. C., Ciais, P., Figge, R. A., Kenny, R. & Markgraf, V. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367, 153–156 (1994).

    Article  Google Scholar 

  16. 16

    Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

    Article  Google Scholar 

  17. 17

    Roche, D. M., Donnadieu, Y., Pucéat, E. & Paillard, D. Effects of changes in δ18O content of the surface ocean on estimated sea surface temperatures in past warm climates. Paleoceanography 21, (2006) (doi:10.1029/2005PA001220).

    Article  Google Scholar 

  18. 18

    Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  19. 19

    Dessert, C., Dupre, B., Gaillardet, J., Francios, L. M. & Allegre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  20. 20

    Taylor, A. S. Chemical Weathering Rates and Sr Isotopes. Thesis, Yale Univ., New Haven (2000).

  21. 21

    Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).

    Article  Google Scholar 

  22. 22

    Wallmann, K. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochem. Geophys. Geosyst. 5, (2004) (doi:10.1029/2003GC000683).

  23. 23

    Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the late Pleistocene. Science 310, 1313–1317 (2005).

    Article  Google Scholar 

  24. 24

    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis 2nd edn (Springer, New York, 2005).

    Google Scholar 

  25. 25

    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall, London, 1986).

    Google Scholar 

  26. 26

    Beerling, D. J. & Woodward, F. I. Vegetation and the Terrestrial Carbon Cycle. Modelling the First 400 Million Years (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  27. 27

    Gradstein, F., Ogg, J. & Smith, A. A Geologic Timescale 2004 (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  28. 28

    Oostendorp, C. The Bryophytes of the Palaeozoic and Mesozoic (J. Cramer, Berlin, 1987).

    Google Scholar 

  29. 29

    Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    Article  Google Scholar 

  30. 30

    Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005).

    Article  Google Scholar 

Download references


We thank H. Elderfield, D. Royer, P. Wilson and I. Woodward for helpful comments, M. Katz for the δ13Ccarb data sets, A. Ridgwell for the pH-corrected δ18O data sets and H. Walker for stable-carbon-isotope analyses. We also thank the following for kindly providing fossil materials for isotopic analysis: A. Herman and V. Krassilov (Russian Academy of Sciences, Moscow), S. Wing and J. Wingerath (Smithsonian Institution, Washington), I. Daniel (University of Canterbury, Christchurch, New Zealand), A. Crame (British Antarctic Survey, Cambridge), P. Kenrick (Natural History Museum, London), W. G. Chaloner (University of London), D. Royer (Wesleyan University), J. McElwain (Trinity College, University of Dublin) and J. Francis (University of Leeds), who also provided Fig. 1d. We gratefully acknowledge financial support of this research through a University of Sheffield studentship to B.J.F., a University of Sheffield Divisional Directors award and a Leverhulme Trust award to D.J.B., and a DOE grant to R.A.B.

Author information




B.J.F. conducted the geochemical and data analyses and drafted the manuscript, S.J.B. conducted data analyses, C.W.A. conceived and designed the uncertainty analyses and time-series comparisons, R.A.B. undertook the geochemical carbon-cycle modelling and D.J.B. planned the project, drafted the manuscript and undertook data analyses.

Corresponding author

Correspondence to David J. Beerling.

Supplementary information

Supplementary Information

Supplementary tables 1-3 and supplementary figure 1 (PDF 111 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fletcher, B., Brentnall, S., Anderson, C. et al. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geosci 1, 43–48 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing