Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A core nucleosome surface crucial for transcriptional silencing

Abstract

Transcriptional silencing in yeast provides a genetically tractable system for analyzing the formation and maintenance of heterochromatin, a transcriptionally repressive chromatin structure found in all organisms. The nucleosome constitutes the central structure of chromatin and comprises two chains each of histones H2A, H2B, H3 and H4. The structure of the nucleosome consists of a central globular core surrounded by outwardly protruding amino-terminal histone tails. We show that a specific surface of the assembled nucleosome core is required for silencing in yeast. This surface is located at a H3/H4 histone-fold motif and contains amino-acid side chains located on the nucleosome disk surface and on an adjacent surface that interacts with DNA. The side chains, identified from mutants in which all three forms of silencing (rDNA, telomere and silent mating locus silencing) are eliminated, are centered around Lys79 of histone H3, a residue methylated by the yeast Dot1 protein1,2. Moreover, mutations in the genes encoding H3 (HHT1 and HHT2) and H4 (HHF1 and HHF2) mapping to spatially adjacent amino-acid residues affected the three forms of silencing distinctly, suggesting that specific interactions mediate each form of silencing. Several of the mutations that we identified resemble those in a cluster of previously identified mutations affecting a distinct histone-fold motif elsewhere in the nucleosome core. These two clusters relieve distinct forms of transcriptional repression (silencing versus repression resulting from lack of Swi/Snf chromatin remodeling activity).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic screen for histone mutations affecting rDNA silencing.
Figure 2: Effect of histone H3 and H4 mutations on silencing of rDNA, telomeres and silent mating loci.
Figure 3: Mapping of lrs mutations to the surface of the yeast nucleosome core particle.
Figure 4: Locations of sin and lrs domains on the nucleosome.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    Article  CAS  Google Scholar 

  2. Ng, H.H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  Google Scholar 

  3. Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  Google Scholar 

  4. Pillus, L. & Rine, J. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59, 637–647 (1989).

    Article  CAS  Google Scholar 

  5. Gottschling, D.E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl Acad. Sci. USA 89, 4062–4065 (1992).

    Article  CAS  Google Scholar 

  6. Singh, J. & Klar, A.J. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6, 186–196 (1992).

    Article  CAS  Google Scholar 

  7. Loo, S. & Rine, J. Silencers and domains of generalized repression. Science 264, 1768–1771 (1994).

    Article  CAS  Google Scholar 

  8. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  9. White, C.L., Suto, R.K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001).

    Article  CAS  Google Scholar 

  10. Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D. & Broach, J.R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  Google Scholar 

  11. Suka, N., Suka, Y., Carmen, A.A., Wu, J. & Grunstein, M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8, 473–479 (2001).

    Article  CAS  Google Scholar 

  12. Kayne, P.S. et al. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39 (1988).

    Article  CAS  Google Scholar 

  13. Park, E.C. & Szostak, J.W. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10, 4932–4934 (1990).

    Article  CAS  Google Scholar 

  14. Megee, P.C., Morgan, B.A., Mittman, B.A. & Smith, M.M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247, 841–845 (1990).

    Article  CAS  Google Scholar 

  15. Smith, J.S. & Boeke, J.D. An unusual form of silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997).

    Article  CAS  Google Scholar 

  16. Imai, S.-I., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  17. Smith, J.S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 (2000).

    Article  CAS  Google Scholar 

  18. Tanner, K.G., Landry, J., Sternglanz, R. & Denu, J.M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000).

    Article  CAS  Google Scholar 

  19. Straight, A.F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).

    Article  CAS  Google Scholar 

  20. Moazed, D., Kistler, A., Axelrod, A., Rine, J. & Johnson, A.D. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl Acad. Sci. USA 94, 2186–2191 (1997).

    Article  CAS  Google Scholar 

  21. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).

    CAS  PubMed  Google Scholar 

  22. Smith, J.S., Caputo, E. & Boeke, J.D. A genetic screen for ribosomal silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol. 19, 3184–3197 (1999).

    Article  CAS  Google Scholar 

  23. Singer, M.S. et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150, 613–632 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luger, K. & Richmond, T.J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    Article  CAS  Google Scholar 

  25. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  Google Scholar 

  26. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    Article  CAS  Google Scholar 

  27. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muhlrad, D., Hunter, R. & Parker, R. A rapid method for localized mutagenesis of yeast genes. Yeast 8, 79–82 (1992).

    Article  CAS  Google Scholar 

  29. Singer, M.S. & Gottschling, D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  Google Scholar 

  30. Cockell, M.M., Perrod, S. & Gasser, S.M. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics 154, 1069–1083 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reynolds, A., Lundblad, V., Dorris, D. & Keaveney, M. Yeast vectors and assays for expression of cloned genes. Current Protocols in Molecular Biology (eds Ausubel, F.M. et al.) 13.16.11–13.16.16 (John Wiley and Sons, New York, 1997).

    Google Scholar 

  32. Delano, W.L. The PyMOL Molecular Graphics System (Delano Scientific, San Carlos, California, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank F. van Leeuwen and D. Gottschling for communicating results before publication and for helpful discussions; K. Luger for helpful discussions and for pointing out the connection to the sin mutations; A. Duina and F. Winston for gifts of plasmids, methods and helpful discussions; and C. Fowler and Y. Eby for technical assistance. This work was supported in part by postdoctoral fellowships from the American Cancer Society (to J.P.) and the National Institutes of Health (to M.S.C.), and by a grant from the National Institutes of Health to J.D.B. and C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef D. Boeke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Cosgrove, M., Youngman, E. et al. A core nucleosome surface crucial for transcriptional silencing. Nat Genet 32, 273–279 (2002). https://doi.org/10.1038/ng982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing