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Commentary: keeping biology in mind
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In working through the examples in the User’s Guide, the reader
is exposed to a number of databases, web sites and other
resources of enormous value for performing in silico analysis of
biological data. Familiarity with and use of this vast arsenal can
help the researcher to plan and execute experiments more intelli-
gently. In using these resources and, more importantly, in draw-
ing biological conclusions based on the results gleaned from
these sites, however, there are a number of caveats and potential
pitfalls of which the user should be aware. Although some of the
specific points we now discuss go beyond the sample questions
included in this guide, the basic lessons to be learned apply to the
full range of bioinformatic analyses.

The user must understand the capabilities—and limitations—
of the programs being used. In the same way that molecular biol-
ogists need to understand the chemistry underlying a routine
assay or the physics behind separation techniques, they must
have a basic understanding of what search or analysis methods
actually do once the ‘Submit’ button has been pressed. Under-
standing what the chemistry, physics or search methods can and
cannot reveal is critical if the user is to extract the full meaning of
the results but not overinterpret them. By understanding the
methods, users can also optimize them and end up with a better
set of results than if these sequence-based search methods were
treated simply as a ‘black box’.

A specific case in which the reader could have encountered dif-
ficulty deals with the detection of domains within a protein, as
described in Question 10. Consider the part of the question that
discussed the Conserved Domain Database (CDD) at the NCBI.
The CDD is a ‘secondary database’, one in which the entries have
been derived from other databases, in this case Pfam23 and the
Simple Modular Architecture Research Tool (SMART)24. Pfam
provides collections of multiple sequence alignments that repre-
sent known, common protein domains. Pfam is subdivided into
two parts: Pfam A, which is manually curated, and Pfam B, which
is automatically generated. By virtue of being ‘hand-crafted’, the
entries in Pfam A are of higher quality and are therefore more
reliable than those in Pfam B. Nevertheless, both Pfam A and
Pfam B provide broad coverage across the spectrum of known
protein domains.

The second source database, SMART, provides information
on 500 domain families, but with a specific emphasis on those
domains that have been implicated in signaling or have been
found in extracellular or chromatin-associated proteins. This
was a deliberate choice by the developers, who wished to tackle
what might be called ‘tougher-to-detect’ or ‘tougher-to-define’
domains. At the outset, simply knowing the scope of the target
database tells the user whether or not it is an appropriate
choice for a sequence of interest, especially when some bio-
chemical data may already be available. If users were to search
solely against SMART and find nothing, without understand-
ing the limited scope of the data underlying the resource, they
might erroneously conclude that the protein of interest had no
known domains.

Continuing with this example, and assuming that the user 
now understands the scope of the underlying source databases, 
a second problem quickly surfaces. When searching Pfam and
SMART through the CDD interface at the NCBI, the search 
is performed using a variation of the BLAST algorithm called 
RPS-BLAST25. If one were, however, to go directly to the Pfam or

SMART web sites and issue the query there, the searches would
be performed using a very different algorithm, a hidden Markov
model26. Although a description of the two different methods is
beyond the scope of this discussion, it is important to understand
that they are fundamentally different and will therefore produce
different results. An extended discussion on this point, using spe-
cific examples, is available27. The CDD front end will miss those
SMART and Pfam entries that represent short domains, repeats
and motifs28. To understand what the methods do does not mean
having to comprehend advanced mathematical equations: basic
explanations in layman’s terms can be found in any one of a
number of reviews or textbooks7,8.

One can often carry out a search and become excited on the
identification of a motif; frequently such a motif is rather small.
The Lys-Asp-Glu-Leu motif is an example; it targets proteins to
the endoplasmic reticulum. But one should beware the ‘short-
motif ’ pitfall. The level of sequence identity required for signifi-
cant homology is much higher for smaller regions—they either
match or they don’t. For very short motifs, homology cannot be
inferred by sequence identity, meaning that short motifs may not
be at all helpful in describing what a protein does.

Longer motifs have greater power in identifying true positives
and eliminating false positives. More importantly, the support-
ing information is made available by simply clicking past the first
page of summary results provided by the search engine. Even, or
especially, the newest of users is encouraged to click away and
discover the information and assumptions underlying the results
that the searches have produced. These are self-explanatory in
many cases.

With respect to complete sequences, the reader is advised to
recall that the preliminary analyses of the human genome
sequence led to a large reduction in the estimated number of
genes contained in the human genome. Earlier, numbers of the
order of 80,000 to as high as 140,000 had been suggested29. With
the draft sequence of the genome in hand, new estimates lie
closer to 30,000–35,000 genes11. If this is correct, the human
would have only twice as many genes as are observed in either the
roundworm or the fruit fly11. At the same time, human genes
appear (in general) to have a more complex structure.

This pronounced ‘reduction’ in the number of genes in the
human genome obviously challenges the one-gene, one-protein
hypothesis (or, more properly, the one-gene, one-enzyme hypoth-
esis30), as the number of proteins in the human proteome is
thought to be well in excess of 35,000 (ref. 11). One explanation of
the large number of individual proteins that can be generated
from this relatively small number of genes is alternative splicing, a
process by which the transcripts from a single gene can be
processed differently and thus give rise to several distinct proteins.
Particularly germane to this discussion is that many proteins have
more than one function, depending on where they are found in
the cell or within the body as a whole.

An interesting example of this phenomenon is the multifunc-
tional protein phosphoglucose isomerase31. This protein cat-
alyzes the interconversion of D-glucose-6-phosphate and
D-fructose-6-phosphate. It is identical to neuroleukin, a protein
secreted by T cells that promotes the survival of some embryonic
spinal neurons and sensory nerves. It is also identical to an
autocrine motility factor that might be involved in metastasis,
and to a differentiation and maturation mediator implicated in
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the in vitro differentiation of human myeloid leukemia HL-60
cells to terminal monocytes. This therefore appears to be a single
soluble protein that can take on four distinct cellular roles.

A more extreme example of one protein being used in alterna-
tive contexts involves an outright phase shift: the proteins known
as α-enolase and τ-crystallin are encoded by a single gene and
have the same amino-acid sequence. In the liver, the protein
functions as α-enolase, a soluble glycolytic enzyme, whereas
within the lens of the eye, it functions as τ-crystallin, a structural
protein32. Proteins for which alternative functions have been
identified have been given the playful name ‘moonlighting pro-
teins’ (see ref. 33 for a review).

Why is this biological finding important to anyone who uses
comparative sequence information? In the early days of sequence
comparison, it was assumed that if a sequence of unknown func-
tion matched a sequence of known function, one knew, by exten-
sion, the function of the unknown; the conclusions of many
published papers were based on this assumption. In light of these
and similar, more recent findings, does sequence similarity still
imply common function? The answer is: maybe yes and maybe
no. In any case, more evidence than just sequence similarity is
needed to draw any conclusion about sequence function.

Moving up in conceptual complexity to the level of structure,
an entire class of molecular modeling techniques is available to
consider similarities between proteins whose relationship might
not be obvious from looking strictly at the nucleotide or amino-
acid sequence. The reason one would want to perform such
analyses was stated early in a relatively short history of bioinfor-
matics34: structure is conserved to a greater extent than sequence.
This stands to reason, as there is evolutionary pressure to main-
tain the three-dimensional shape of proteins, particularly those
critical to the basic functions of a cell.

Inferring common function from structural similarity, how-
ever, is more problematic. Consider the TIM barrel. It defines a
structural superfamily whose members show a high degree of
structural similarity over a substantial number of residues. The
TIM-barrel fold is a good example of possible divergent evolu-
tion, because this same basic structure mediates a wide variety of
chemical reactions critical to biological survival. The TIM barrel
is associated with one non-enzymatic and fifteen enzymatic
functions35, and transcripts encoding TIM-barrel proteins
account for over 8% of the yeast transcriptome36. The roles of
TIM-barrel proteins are diverse, ranging from isomerases to 
oxidoreductases and hydrolases. This generic versatility is eco-
nomical for the cell but can make the job of assigning function to
structures or substructures difficult. In deciding whether struc-
tural similarity implies common function, one needs to consider
the subcellular localization of the proteins, when they are
expressed, and the presence or absence of cofactors that might
significantly alter their structure.

A final point to be considered relates to annotations in the
public databases. Although these are of great value, most are

made in an automated fashion, without the benefit of human
curation. This is a matter of practicality, as it would be difficult to
verify every annotation in the human genome, let alone those of
every sequenced organism. Although some sequence-based
annotations, such as the positions of genome, are determined
experimentally and are therefore quite reliable, others are no
more than predictions. The most notable of these are the predic-
tions of gene structure that can be found at the NCBI, Ensembl
and UCSC. Question 7 in this guide provides an excellent exam-
ple of inconsistencies in gene predictions obtained using meth-
ods; the user should use such information carefully, particularly
when designing experiments.

The second type of annotation—functional annotation—can
be even more problematic. Even when similarity can be reliably
detected, the functional annotations currently found in the pub-
lic databases are often incorrect. For example37, the functional
annotations of 340 Mycoplasma genes were assessed: 8% were
found to be incorrect, and, in many cases, did not logically con-
nect to the known biology and metabolism of Mycoplasma. So
never use database annotation as evidence of function when
there are few homologs or when the annotations are inconsistent
between homologs. And remember that annotations are intran-
sitive38: if protein A and protein B share a common functional
annotation, and so do proteins B and C, proteins A and C do not
necessarily have the same function. Use functional annotations
as a first step, and confirm the annotations by going back into the
primary literature.

Biology is complex, and we still do not understand it very well.
Although performing searches and finding data are not difficult,
the intelligent use of all of the accumulated facts from databases
is. It is always necessary to take a step backwards and ask a very
simple question: do the search results actually make biological
sense? Even when one is able to make biological sense of a predic-
tion of function, it may turn out to be incorrect. As science is
increasingly undertaken in a ‘sequence-based’ fashion, using
sequence data to underpin the experimental design and interpre-
tation of experiments, it becomes increasingly important that
computational results are cross-checked in the laboratory, against
the literature and with more robust computational analysis, so
that the conclusions not only make sense, but are also correct.
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