Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The transcriptional program of meiosis and sporulation in fission yeast

Abstract

Sexual reproduction requires meiosis to produce haploid gametes, which in turn can fuse to regenerate a diploid organism. We have studied the transcriptional program that drives this developmental process in Schizosaccharomyces pombe using DNA microarrays. Here we show that hundreds of genes are regulated in successive waves of transcription that correlate with major biological events of meiosis and sporulation. Each wave is associated with specific promoter motifs. Clusters of neighboring genes (mostly close to telomeres) are co-expressed early in the process, which reflects a more global control of these genes. We find that two Atf-like transcription factors are essential for the expression of late genes and formation of spores, and identify dozens of potential Atf target genes. Comparison with the meiotic program of the distantly related Saccharomyces cerevisiae reveals an unexpectedly small shared meiotic transcriptome, suggesting that the transcriptional regulation of meiosis evolved independently in both species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Meiotic landmarks.
Figure 2: Transcriptional program of meiosis and sporulation.
Figure 3: Transcriptional regulation during meiosis.
Figure 4: Overlap between the meiotic transcriptomes of budding and fission yeast.

Similar content being viewed by others

References

  1. Yamamoto, M., Imai, I. & Watanabe, Y. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Life Cycle and Cell Biology (eds Pringle, J.R., Broach, J.R. & Jones, E.W.) 1035–1106 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  2. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  Google Scholar 

  3. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  Google Scholar 

  4. Iino, Y. & Yamamoto, M. Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol. Gen. Genet. 198, 416–421 (1985).

    Article  CAS  Google Scholar 

  5. Nurse, P. Mutants of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol. Gen. Genet. 198, 497 (1985).

  6. Petersen, J., Weilguny, D., Egel, R. & Nielsen, O. Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Mol. Cell. Biol. 15, 3697–3707 (1995).

    Article  CAS  Google Scholar 

  7. Sugimoto, A., Iino, Y., Maeda, T., Watanabe, Y. & Yamamoto, M. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5, 1990–1999 (1991).

    Article  CAS  Google Scholar 

  8. Yamamoto, A. & Hiraoka, Y. How do meiotic chromosomes meet their homologous partners? Lessons from fission yeast. BioEssays 23, 526–533 (2001).

    Article  CAS  Google Scholar 

  9. Davis, L. & Smith, G.R. Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 98, 8395–8402 (2001).

    Article  CAS  Google Scholar 

  10. Lowndes, N.F., McInerny, C.J., Johnson, A.L., Fantes, P.A. & Johnston, L.H. Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10+. Nature 355, 449–453 (1992).

    Article  CAS  Google Scholar 

  11. Zhu, Y., Takeda, T., Nasmyth, K. & Jones, N. pct1+, which encodes a new DNA-binding partner of p85cdc10, is required for meiosis in the fission yeast Schizosaccharomyces pombe. Genes Dev. 8, 885–898 (1994).

    Article  CAS  Google Scholar 

  12. Sugiyama, A., Tanaka, K., Okazaki, K., Nojima, H. & Okayama, H. A zinc finger protein controls the onset of premeiotic DNA synthesis of fission yeast in a Mei2-independent cascade. EMBO J. 13, 1881–1887 (1994).

    Article  CAS  Google Scholar 

  13. Miyamoto, M., Tanaka, K. & Okayama, H. res2+, a new member of the cdc10+/SWI4 family, controls the 'start' of mitotic and meiotic cycles in fission yeast. EMBO J. 13, 1873–1880 (1994).

    Article  CAS  Google Scholar 

  14. Ding, R. & Smith, G.R. Global control of meiotic recombination genes by Schizosaccharomyces pombe rec16 (rep1). Mol. Gen. Genet. 258, 663–670 (1998).

    Article  CAS  Google Scholar 

  15. Asakawa, H., Kitamura, K. & Shimoda, C. A novel Cdc20-related WD-repeat protein, Fzr1, is required for spore formation in Schizosaccharomyces pombe. Mol. Genet. Genomics 265, 424–435 (2001).

    Article  CAS  Google Scholar 

  16. Blanco, M.A., Pelloquin, L. & Moreno, S. Fission yeast mfr1 activates APC and coordinates meiotic nuclear division with sporulation. J. Cell Sci. 114, 2135–2143 (2001).

    CAS  PubMed  Google Scholar 

  17. Cooper, K.F., Mallory, M.J., Egeland, D.B., Jarnik, M. & Strich, R. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc. Natl Acad. Sci. USA 97, 14548–14553 (2000).

    Article  CAS  Google Scholar 

  18. Nakamura, T., Nakamura-Kubo, M., Hirata, A. & Shimoda, C. The Schizosaccharomyces pombe spo3+ gene is required for assembly of the forespore membrane and genetically interacts with psy1+-encoding syntaxin-like protein. Mol. Biol. Cell 12, 3955–3972 (2001).

    Article  CAS  Google Scholar 

  19. Fares, H., Goetsch, L. & Pringle, J.R. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132, 399–411 (1996).

    Article  CAS  Google Scholar 

  20. Horie, S. et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998).

    Article  CAS  Google Scholar 

  21. Abe, H. & Shimoda, C. Autoregulated expression of Schizosaccharomyces pombe meiosis-specific transcription factor Mei4 and a genome-wide search for its target genes. Genetics 154, 1497–1508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohmiya, R., Kato, C., Yamada, H., Aiba, H. & Mizuno, T. Isolation of multicopy suppressors of the calcium sensitivity of a mutant lacking the bZIP transcription factor Atf1 in fission yeast. Mol. Gen. Genet. 261, 297–306 (1999).

    Article  CAS  Google Scholar 

  23. Shiozaki, K. & Russell, P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10, 2276–2288 (1996).

    Article  CAS  Google Scholar 

  24. Nimmo, E.R., Cranston, G. & Allshire, R.C. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811 (1994).

    Article  CAS  Google Scholar 

  25. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    Article  CAS  Google Scholar 

  26. Primig, M. et al. The core meiotic transcriptome in budding yeasts. Nature Genet. 26, 415–423 (2000).

    Article  CAS  Google Scholar 

  27. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  28. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  Google Scholar 

  29. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  30. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Vetrie for help with microarray printing; H. Murakami for advice on pat1 experiments; H. Nojima for providing a meiotic cDNA library; C. Shimoda for strains, V. Wood for gene annotations and information on orphans and orthologs; members of our group for advice and discussions; and A. Bradley, J. Hayles, P. Nurse and M. Toone for comments on the manuscript. This research was funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Bähler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mata, J., Lyne, R., Burns, G. et al. The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32, 143–147 (2002). https://doi.org/10.1038/ng951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing