Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biochemical networking contributes more to genetic buffering in human and mouse metabolic pathways than does gene duplication

A Corrigendum to this article was published on 01 December 2002

Abstract

During evolution different genes evolve at unequal rates, reflecting the varying functional constraints on phenotype. An important contributor to this variation is genetic buffering, which reduces the potential detrimental effects of mutations. We studied whether gene duplication and redundant metabolic networks affect genetic buffering by comparing the evolutionary rate of 242 human and mouse orthologous genes involved in metabolic pathways. A gene with a redundant network is defined as one for which the structural layout of metabolic pathways provides an alternative metabolic route that can, in principle, compensate for the loss of a protein function encoded by the gene. We found that genes with redundant networks evolved more quickly than did genes without redundant networks, but no significant difference was detected between single-copy genes and gene families. This implies that redundancy in metabolic networks provides significantly more genetic buffering than do gene families. We also found that genes encoding proteins involved in glycolysis and gluconeogenesis showed as a group a distinct pattern of variation, in contrast to genes involved in other pathways. These results suggest that redundant networks provide genetic buffering and contribute to the functional diversification of metabolic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Ka/Ks values for 242 genes encoding proteins in various metabolic pathways.
Figure 2: Schematic for defining networks on the basis of the structure of metabolic pathways.

Similar content being viewed by others

References

  1. Ohno, S. Evolution by Gene Duplication (Springer, Heidelberg, 1970).

  2. Walsh, J.B. How often do duplicated genes evolve new functions? Genetics 139, 421–428 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  5. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lenski, R.E., Ofria, C., Collier, T.C. & Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabasi, A.L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, J.H. Thinking about genetic redundancy. Trends Genet. 9, 395–399 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Pickett, F.B. & Meeks-Wagner, D.R. Seeing double: appreciating genetic redundancy. Plant Cell 7, 1347–1356 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michal, G. G. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (John Wiley and Sons, New York, 1999).

  11. Reder, C. Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Makalowski, W. & Boguski, M.S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc. Natl Acad. Sci. USA 95, 9407–9412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner, A. Robustness against mutations in genetic networks of yeast. Nature Genet. 24, 355–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, A. Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc. Natl Acad. Sci. USA 97, 6579–6584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schuster, S., Dandekar, T. & Fell, D.A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Remold, S.K. & Lenski, R.E. Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proc. Natl Acad. Sci. USA 98, 11388–11393 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rebhan, M., Chalifa-Caspi, V., Prilusky, J. & Lancet, D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14, 656–664 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rivera, M.C., Jain, R., Moore, J.E. & Lake, J.A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  24. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, S., Tamura, K., Jakobsen, I.B. & Nei, M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wright, F. The 'effective number of codons' used in a gene. Gene 87, 23–29 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Comeron, J.M. & Aguade, M. An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 47, 268–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Tajima, F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135, 599–607 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Eichler and S. Rutherford for comments on a draft of this manuscript and J. Bailey and M. Johnson for assistance with the computational analysis. This work was supported by a grant from the US National Institutes of Health and a gift from the Charles B. Wang Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Nadeau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitami, T., Nadeau, J. Biochemical networking contributes more to genetic buffering in human and mouse metabolic pathways than does gene duplication. Nat Genet 32, 191–194 (2002). https://doi.org/10.1038/ng945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing