Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deletion in Catna2, encoding αN-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation

Abstract

Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic and have cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cerebella of cdf/cdf homozygous mice, approximately 40% of Purkinje cells are located ectopically in the white matter and inner granule-cell layer. Many hippocampal pyramidal cells are scattered in the plexiform layers, and those that are correctly positioned are less densely packed than are cells in wild-type mice. We show that fear conditioning and prepulse inhibition of the startle response are also disrupted in cdf/cdf mice. We identify a deletion on chromosome 6 that removes approximately 150 kb in the cdf critical region. The deletion includes part of Catna2, encoding αN-catenin, a protein that links the classical cadherins to the neuronal cytoskeleton. Expression of a Catna2 transgene in cdf/cdf mice restored normal cerebellar and hippocampal morphology, prepulse inhibition and fear conditioning. The findings suggest that catenin–cadherin cell-adhesion complexes are important in cerebellar and hippocampal lamination and in the control of startle modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Startle amplitude, PPI of startle and fear-potentiated startle in cdf/cdf mice (n = 14) and wildtype controls (n = 11).
Figure 2: Identification of a deletion in the cdf critical region.
Figure 3: Truncation of Catna2 in cdf/cdf mice.
Figure 4: Expression of αN-catenin during cerebellar development.
Figure 5: Expression of the Catna2 cDNA rescues the cdf phenotype.
Figure 6: Normal hippocampal synapse formation in cdf/cdf animals.

Similar content being viewed by others

References

  1. Cook, S.A., Bronson, R.T., Donahue, L.R., Ben-Arie, N. & Davisson, M.T. Cerebellar deficient folia (cdf): a new mutation on mouse Chromosome 6. Mamm. Genome 8, 108–112 (1997).

    Article  CAS  Google Scholar 

  2. Swerdlow, N.R. & Geyer, M.A. Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav. Neurosci. 107, 104–117 (1993).

    Article  CAS  Google Scholar 

  3. Davis, M. & Astrachan, D.I. Conditioned fear and startle magnitude: effects of different footshock or backshock intensities used in training. J. Exp. Psychol. Anim. Behav. Process. 4, 95–103 (1978).

    Article  CAS  Google Scholar 

  4. Park, C., Longo, C.M. & Ackerman, S.L. Genetic and physical mapping of the cerebellar deficient folia (cdf) locus on mouse Chromosome 6. Genomics 69, 135–138 (2000).

    Article  CAS  Google Scholar 

  5. Uchida, N. et al. Mouse αN-catenin: two isoforms, specific expression in the nervous system, and chromosomal localization of the gene. Dev. Biol. 163, 75–85 (1994).

    Article  CAS  Google Scholar 

  6. Rimm, D.L., Koslov, E.R., Kebriaei, P., Cianci, C.D. & Morrow, J.S. α1-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA. 92, 8813–8817 (1995).

    Article  CAS  Google Scholar 

  7. Park, C., Finger, J.H., Cooper, J.A. & Ackerman, S.L. The cerebellar deficient folia (cdf) gene acts intrinsically in Purkinje cell migrations. Genesis 32, 32–41 (2002).

    Article  CAS  Google Scholar 

  8. Beierbach, E., Park, C., Ackerman, S.L., Goldowitz, D. & Hawkes, R. Abnormal dispersion of a Purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf). J. Comp. Neurol. 436, 42–51 (2001).

    Article  CAS  Google Scholar 

  9. Ozol, K., Hayden, J.M., Oberdick, J. & Hawkes, R. Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol. 412, 95–111 (1999).

    Article  CAS  Google Scholar 

  10. Suzuki, S.C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    Article  CAS  Google Scholar 

  11. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  12. Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    Article  CAS  Google Scholar 

  13. Fannon, A.M. & Colman, D.R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434 (1996).

    Article  CAS  Google Scholar 

  14. Colman, D.R. Neurites, synapses, and cadherins reconciled. Mol. Cell. Neurosci. 10, 1–6 (1997).

    Article  CAS  Google Scholar 

  15. Serafini, T. An old friend in a new home: cadherins at the synapse. Trends Neurosci. 20, 322–323 (1997).

    Article  CAS  Google Scholar 

  16. Radice, G.L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol. 181, 64–78 (1997).

    Article  CAS  Google Scholar 

  17. Haegel, H. et al. Lack of β-catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  Google Scholar 

  18. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–301 (1992).

    Article  CAS  Google Scholar 

  19. Nagafuchi, A., Ishihara, S. & Tsukita, S. The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-α-catenin fusion molecules. J. Cell Biol. 127, 235–245 (1994).

    Article  CAS  Google Scholar 

  20. Torres, M. et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl Acad. Sci. USA 94, 901–906 (1997).

    Article  CAS  Google Scholar 

  21. Gotz, M., Wizenmann, A., Reinhardt, S., Lumsden, A. & Price, J. Selective adhesion of cells from different telencephalic regions. Neuron 16, 551–564 (1996).

    Article  CAS  Google Scholar 

  22. Provost, E. & Rimm, D.L. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr. Opin. Cell Biol. 11, 567–572 (1999).

    Article  CAS  Google Scholar 

  23. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  24. Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).

    Article  CAS  Google Scholar 

  25. Swerdlow, N.R., Geyer, M.A. & Braff, D.L. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156, 194–215 (2001).

    Article  CAS  Google Scholar 

  26. Davis, M. Anatomic and physiologic substrates of emotion in an animal model. J. Clin. Neurophysiol. 15, 378–387 (1998).

    Article  CAS  Google Scholar 

  27. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  28. Morgan, J.G., Dolganov, G.M., Robbins, S.E., Hinton, L.M. & Lovett, M. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res. 20, 5173–5179 (1992).

    Article  CAS  Google Scholar 

  29. Lynn, R.B., Bechtold, L.S. & Miselis, R.R. Ultrastructure of bombesin-like immunoreactive nerve terminals in the nucleus of the solitary tract and the dorsal motor nucleus. J. Auton. Nerv. Syst. 62, 174–182 (1997).

    Article  CAS  Google Scholar 

  30. Falls, W.A. Fear-potentiated startle in mice. in Current Protocols in Neuroscience (eds Crawley, J.N., Gerfen, C., McKay, R., Rogawski, M., Sibley, D. & Skolnick, P.) (Wiley, New York, in press).

Download references

Acknowledgements

We thank M. Takeichi for the NCAT5 antibody, T. Lufkin for the IRES-lacZ plasmid; J. Miyazaki for the pCAGGS plasmid; Q.-Y. Zheng for ABR analysis; L. Bechtold, P. Finger and R. Bronson for assistance with electron microscopy; the Microchemistry Facility for DNA sequencing; W. Frankel, P. Nishina and J. Willott for comments on the manuscript; R. Burgess for discussions and J. Smith for figure preparation. This work was supported by a grant from the National Institutes of Health (National Institute of Neurological Disorders and Stroke) to S.L.A., a National Center for Research Resources Center of Biomedical Research Excellence grant, an NIH subcontract to W.A.F., an NIH postdoctoral fellowship to J.H.F., a grant from the Molecular Medicine Research Group Program of the Korean Ministry of Science and Technology to C.P. and an institutional Cancer Center Support Grant from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Ackerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Falls, W., Finger, J. et al. Deletion in Catna2, encoding αN-catenin, causes cerebellar and hippocampal lamination defects and impaired startle modulation. Nat Genet 31, 279–284 (2002). https://doi.org/10.1038/ng908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing