Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition


Tenascin-X is a large extracellular matrix protein of unknown function1,2,3. Tenascin-X deficiency in humans is associated with Ehlers–Danlos syndrome4,5, a generalized connective tissue disorder resulting from altered metabolism of the fibrillar collagens6. Because TNXB is the first Ehlers–Danlos syndrome gene that does not encode a fibrillar collagen or collagen-modifying enzyme7,8,9,10,11,12,13,14, we suggested that tenascin-X might regulate collagen synthesis or deposition15. To test this hypothesis, we inactivated Tnxb in mice. Tnxb−/− mice showed progressive skin hyperextensibility, similar to individuals with Ehlers–Danlos syndrome. Biomechanical testing confirmed increased deformability and reduced tensile strength of their skin. The skin of Tnxb−/− mice was histologically normal, but its collagen content was significantly reduced. At the ultrastructural level, collagen fibrils of Tnxb−/− mice were of normal size and shape, but the density of fibrils in their skin was reduced, commensurate with the reduction in collagen content. Studies of cultured dermal fibroblasts showed that although synthesis of collagen I by Tnxb−/− and wildtype cells was similar, Tnxb−/− fibroblasts failed to deposit collagen I into cell-associated matrix. This study confirms a causative role for TNXB in human Ehlers–Danlos syndrome and suggests that tenascin-X is an essential regulator of collagen deposition by dermal fibroblasts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting of Tnxb.
Figure 2: Skin phenotype of Tnxb−/− mice.
Figure 3: Biomechanical testing of skin.
Figure 4: Analysis of collagen in skin.
Figure 5: Tnxb facilitates collagen deposition.

Accession codes




  1. Bristow, J., Tee, M.K., Gitelman, S.E., Mellon, S.H. & Miller, W.L. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J. Cell Biol. 122, 265–278 (1993).

    Article  CAS  Google Scholar 

  2. Lethias, C., DesCollonges, Y., Boutillon, M. & Garrone, R. Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol. 15, 11–19 (1996).

    Article  CAS  Google Scholar 

  3. Matsumoto, K., Saga, Y., Ikemura, T., Sakakura, T. & Chiquet-Ehrismann, R. The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J. Cell Biol. 125, 483–493 (1994).

    Article  CAS  Google Scholar 

  4. Burch, G.H. et al. Tenascin-X deficiency is associated with Ehlers–Danlos Syndrome. Nature Genet. 17, 104–108 (1997).

    Article  CAS  Google Scholar 

  5. Schalkwijk, J. et al. A recessive form of Ehlers–Danlos syndrome caused by tenascin-X deficiency. N. Engl. J. Med. 345, 1167–1175 (2001).

    Article  CAS  Google Scholar 

  6. Beighton, P., De Paepe, A., Steinmann, B., Tsipouras, P. & Wenstrup, R.J. Ehlers–Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am. J. Med. Genet. 77, 31–37 (1998).

    Article  CAS  Google Scholar 

  7. Burrows, N. et al. A point mutation in an intronic branch site results in aberrant splicing of COL5A1 and in Ehlers–Danlos syndrome type II in two British families. Am. J. Hum. Genet. 63, 390–398 (1998).

    Article  CAS  Google Scholar 

  8. De Paepe, A., Nuytinck, L., Hausser, I., Anton-Lamprecht, I. & Naeyaert, J.M. Mutations in the COL5A1 gene are causal in the Ehlers–Danlos syndromes I and II. Am. J. Hum. Genet. 60, 547–554 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Eyre, D.R., Shapiro, F.D. & Aldridge, J.F. A heterozygous collagen defect in a variant of the Ehlers–Danlos syndrome type VII. Evidence for a deleted amino-telopeptide domain in the pro-α 2(I) chain. J. Biol. Chem. 260, 11322–11329 (1985).

    CAS  PubMed  Google Scholar 

  10. Hyland, J. et al. A homozygous stop codon in the lysyl hydroxylase gene in two siblings with Ehlers–Danlos syndrome type VI. Nature Genet. 2, 228–231 (1992).

    Article  CAS  Google Scholar 

  11. Smith, L.T., Schwarze, U., Goldstein, J. & Byers, P.H. Mutations in the COL3A1 gene result in the Ehlers–Danlos syndrome type IV and alterations in the size and distribution of the major collagen fibrils of the dermis. J. Invest. Dermatol. 108, 241–247 (1997).

    Article  CAS  Google Scholar 

  12. Smith, L.T. et al. Human dermatosparaxis: a form of Ehlers–Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am. J. Hum. Genet. 51, 235–244 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Toriello, H.V. et al. A translocation interrupts the COL5A1 gene in a patient with Ehlers–Danlos syndrome and hypomelanosis of Ito. Nature Genet. 13, 361–365 (1996).

    Article  CAS  Google Scholar 

  14. Wenstrup, R.J., Langland, G.T., Willing, M.C., D'Souza, V.N. & Cole, W.G. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro α 1(V) chains results in the gravis form of the Ehlers–Danlos syndrome (type I). Hum. Mol. Genet. 5, 1733–1736 (1996).

    Article  CAS  Google Scholar 

  15. Mao, J.R. & Bristow, J. The Ehlers-Danlos syndrome: on beyond collagens. J. Clin. Invest. 107, 1063–1069 (2001).

    Article  CAS  Google Scholar 

  16. Morel, Y., Bristow, J., Gitelman, S.E. & Miller, W.L. Transcript encoded on the opposite strand of the human steroid 21-hydroxylase/complement component C4 gene locus. Proc. Natl Acad. Sci. USA 86, 6582–6586 (1989).

    Article  CAS  Google Scholar 

  17. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues 259–260 (Springer-Verlag, New York, 1990).

    Book  Google Scholar 

  18. Daly, C. Biomechanical properties of dermis. J. Invest. Dermatol. 79 (suppl.), 17S–20S (1982).

    Article  Google Scholar 

  19. Byers, P.H. in The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 4029–4077 (McGraw-Hill, New York, 1995).

    Google Scholar 

  20. Vogel, A., Holbrook, K.A., Steinmann, B., Gitzelmann, R. & Byers, P.H. Abnormal collagen fibril structure in the gravis form (type I) of Ehlers–Danlos syndrome. Lab. Invest. 40, 201–206 (1979).

    CAS  PubMed  Google Scholar 

  21. Burch, G.H., Bedolli, M.A., McDonough, S., Rosenthal, S.M. & Bristow, J. Embryonic expression of tenascin-X suggest a role in limb, muscle, and heart development. Develop. Dynam. 203, 491–504 (1995).

    Article  CAS  Google Scholar 

  22. Bonadio, J. et al. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc. Natl Acad. Sci. USA 18, 7145–7149 (1990).

    Article  Google Scholar 

  23. Matsumoto, K. et al. Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes Cells 6, 1101–1111 (2001).

    Article  CAS  Google Scholar 

  24. Botas, C. et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl Acad. Sci. USA 95, 11869–11874 (1998).

    Article  CAS  Google Scholar 

  25. Cheng, P. An improved method for the determination of hydroxyproline in rat skin. J. Invest. Derm. 53, 112–115 (1969).

    Article  CAS  Google Scholar 

  26. Coats, W., Cheung, D., Han, B., Currier, J. & Faxon, D. Balloon angioplasty significantly increases collagen content but does not alter collagen subtype I/III ratios in the atherosclerotic rabbit iliac model. J. Mol. Cell. Cardiol. 28, 441–446 (1996).

    Article  CAS  Google Scholar 

  27. Bateman, J., Chan, D., Mascara, T., Rogers, J. & Cole, W. Collagen defects in lethal perinatal osteogenesis imperfecta. Biochem. J. 240, 699–708 (1986).

    Article  CAS  Google Scholar 

  28. Barsh, G., David, K. & Byers, P. Type I osteogenesis imperfecta: a nonfunctional allele for proα1(I) chains of type I procollagen. Proc. Natl Acad. Sci. USA 79, 3838 (1982).

    Article  CAS  Google Scholar 

  29. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T. & Aizawa, S. Mice develop normally without tenascin. Genes Develop. 6, 1821–1831 (1992).

    Article  CAS  Google Scholar 

Download references


This work was supported by grants to J. Bristow from the National Institutes of Health and the March of Dimes Birth Defects Foundation. We would like to thank T. Huby for assistance with ES cell culture, P. Byers for encouragement and advice on the metabolic labeling experiments, and L. Pennacchio for critical reading of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to James Bristow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mao, J., Taylor, G., Dean, W. et al. Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30, 421–425 (2002).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing