Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The DNA damage-dependent intra–S phase checkpoint is regulated by parallel pathways

Abstract

To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response—including the S-phase checkpoint pathways—to delay DNA replication1,2. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein4, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS)5,6. It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase7,8, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NBS and A-TLD cells show an intermediate RDS phenotype.
Figure 2: Caffeine augments RDS in NBS and A-TLD cells.
Figure 3: Irradiation-induced silencing of Cdc25A and Cdk2 prevents Cdc45 association with DNA replication origin in NBS and A-TLD cells.
Figure 4: Irradiation-induced phosphorylation of Chk2, and inhibition of DNA synthesis in U-2-OS cells with modified S-phase checkpoint components.
Figure 5: Defects in ATM-Chk2-Cdc25A or ATM-Nbs1-Mre11 pathways cooperate to disable the irradiation-induced S-phase checkpoint.
Figure 6: Schematic model of the two parallel branches of the ATM-regulated S-phase checkpoint in mammalian cells.

Similar content being viewed by others

References

  1. Rotman G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kastan, M.B. & Lim, D.S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  3. Khanna, K.K. & Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Petrini, J.H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Stewart, G.S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Falck, J., Mailand, N., Syljuåsen, R.G., Bartek, J. & Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Takisawa, H., Mimura, S. & Kubota, Y. Eukaryotic DNA repliation: from pre-replication complex to initiation complex. Curr. Opin. Cell Biol. 12, 690–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Larner, J.M. et al. Radiation down-regulates replication origin activity throughout the S phase in mammalian cells. Nucleic Acids Res. 27, 803–809 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Painter, R.B. & Young, B.R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkaria, J.N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59, 4375–4382 (1999).

    CAS  PubMed  Google Scholar 

  12. Blasina, A., Price, B.D., Turenne, G.A. & McGowan, C.H. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol. 9, 1135–1138 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Melchionna, R., Chen, X.B., Blasina, A. & McGowan, C.H. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biol. 2, 762–765 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aparicio, O.M., Stout, A.M. & Bell, S.P. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl Acad. Sci. USA 96, 9130–9135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou, L. & Stillman, B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol. Cell. Biol. 20, 3086–3096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell 6, 649–659 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kukimoto, I., Igaki, H. & Kanda, T. Human CDC45 protein binds to minchromosome maintenance 7 protein and the p70 subunit of DNA polymerase α. Eur. J. Biochem. 265, 936–943 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Trivedi, A., Waltz, S.E., Kamath, S. & Leffak, M. Multiple initiations in the c-myc replication origin independent of chromosomal location. DNA Cell Biol. 17, 885–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tao, L., Dong, Z., Leffak, M., Zannis-Hadjopoulos, M. & Price, G. Major DNA replication initiation sites in the c-myc locus in human cells. J. Cell. Biochem. 78, 442–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lim, D. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Maser, R.M. et al. The Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21, 6006–6016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, B., Kim, S. & Kastan, M.B. Involvement of Brca1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 21, 3445–3450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carr, A.M. Cell cycle. Piecing together the p53 puzzle. Science 287, 1765–1766 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sørensen, C.S. et al. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol. Cell. Biol. 20, 7613–7623 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Méndez, J. & Stillman, B. Chromatin association of human origin recognition complex, Cdc6, and minchromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20, 8602–8612 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Mendez, I. Kukimoto, Y. Shiloh, D. Delia, S. J. Elledge, M.B. Kastan and G. Evan for providing technical advice and reagents, and the Danish Cancer Society and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis's Legat for financial support. This work was supported in part by a grant from the National Institutes of Health (to J.H.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Bartek.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falck, J., Petrini, J., Williams, B. et al. The DNA damage-dependent intra–S phase checkpoint is regulated by parallel pathways. Nat Genet 30, 290–294 (2002). https://doi.org/10.1038/ng845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing