Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2

Abstract

The arrest of differentiation is a feature of both chronic myelogenous leukemia cells in myeloid blast crisis and myeloid precursors that ectopically express the p210BCR-ABL oncoprotein; however, its underlying mechanisms remain poorly understood. Here we show that expression of BCR-ABL in myeloid precursor cells leads to transcriptional suppression of the granulocyte colony–stimulating factor receptor G-CSF-R (encoded by CSF3R), possibly through down-modulation of C/EBPα—the principal regulator of granulocytic differentiation. Expression of C/EBPα protein is barely detectable in primary marrow cells taken from individuals affected with chronic myeloid leukemia in blast crisis. In contrast, CEBPA RNA is clearly present. Ectopic expression of C/EBPα induces granulocytic differentiation of myeloid precursor cells expressing BCR-ABL. Expression of C/EBPα is suppressed at the translational level by interaction of the poly(rC)-binding protein hnRNP E2 with CEBPA mRNA, and ectopic expression of hnRNP E2 in myeloid precursor cells down-regulates both C/EBPα and G-CSF-R and leads to rapid cell death on treatment with G-CSF (encoded by CSF3). Our results indicate that BCR-ABL regulates the expression of C/EBPα by inducing hnRNP E2—which inhibits the translation of CEBPA mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of BCR-ABL on G-CSF-R expression.
Figure 2: Functional relationship between BCR-ABL and expression of C/EBPα.
Figure 3: Proteasome-dependent degradation and neo-synthesis of C/EBPα in parental and BCR-ABL–expressing cells.
Figure 4: BCR-ABL–induced suppression of CEBPA mRNA translation depends on the integrity of its intercistronic region.
Figure 5: Characterization of intercistronic CEBPA mRNA-binding proteins.
Figure 6: Levels of hnRNP E2 in BCR-ABL–expressing cells.
Figure 7: In vivo and in vitro effects of hnRNP E2 on expression of C/EBPα.

Similar content being viewed by others

References

  1. Kantarjian, H.M., Deisseroth, A., Kurzrock, R., Estrov, Z. & Talpaz, M. Chronic myelogenous leukemia: a concise update. Blood 82, 691–703 (1993).

    CAS  Google Scholar 

  2. Gordon, M.Y. Biological consequences of the BCR-ABL fusion gene in humans and mice. J. Clin. Pathol. 52, 719–722 (1999).

    Article  CAS  Google Scholar 

  3. Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med. 340, 1330–1340 (1999).

    Article  CAS  Google Scholar 

  4. Carlesso, N., Frank, D.A. & Griffin, J.D. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by BCR-ABL. J. Exp. Med. 183, 811–820 (1996).

    Article  CAS  Google Scholar 

  5. Perrotti, D. et al. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR-ABL-mediated leukemogenesis. EMBO J. 17, 4442–4455 (1998).

    Article  CAS  Google Scholar 

  6. Ward, A.C., Loeb, D.M., Soede-Bobok, A.A., Touw, I.P. & Friedman, A.D. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 14, 973–990 (2000).

    Article  CAS  Google Scholar 

  7. Orkin, S.H. Diversification of hematopoietic stem cells to specific lineages. Nature Rev. Genet. 1, 57–64 (2000).

    Article  CAS  Google Scholar 

  8. Zhang, D. E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl Acad. Sci. USA 94, 569–574 (1997).

    Article  CAS  Google Scholar 

  9. Radomska, H.S. et al. CCAAT enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell. Biol. 18, 4301–4314 (1998).

    Article  CAS  Google Scholar 

  10. Smith, L.T., Hohaus, S., Gonzalez, D.A., Dziennis, S.E. & Tenen, D.G. PU.1 (Spi-1) and C/EBPα regulate the granulocyte colony- stimulating factor receptor promoter in myeloid cells. Blood 88, 1234–1247 (1996).

    CAS  Google Scholar 

  11. Wang, X., Scott, E., Sawyers, C.L. & Friedman, A.D. C/EBPα bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32Dcl3 myeloblasts. Blood 94, 560–571 (1999).

    CAS  Google Scholar 

  12. Scott, L.M., Civin, C.I., Rorth, P. & Friedman, A.D. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725–1735 (1992).

    CAS  Google Scholar 

  13. Cheng, T. et al. Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc. Natl Acad. Sci. USA 93, 13158–13162 (1996).

    Article  CAS  Google Scholar 

  14. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999).

    Article  CAS  Google Scholar 

  15. Lekstrom-Himes, J. & Xanthopoulos, K.G. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273, 28545–28548 (1998).

    Article  CAS  Google Scholar 

  16. Lincoln, A.J., Monczak, Y., Williams, S.C. & Johnson, P.F. Inhibition of CCAAT/enhancer-binding proteinα and β translation by upstream open reading frames. J. Biol. Chem. 273, 9552–9560 (1998).

    Article  CAS  Google Scholar 

  17. Laneuville, P., Heisterkamp, N. & Groffen, J. Expression of the chronic myelogenous leukemia-associated p210BCR-ABL oncoprotein in a murine IL-3 dependent myeloid cell line. Oncogene 6, 275–282 (1991).

    CAS  Google Scholar 

  18. Steinman, R.A. & Tweardy, D.J. Granulocyte colony-stimulating factor receptor mRNA upregulation is an immediate early marker of myeloid differentiation and exhibits dysfunctional regulation in leukemic cells. Blood 83, 119–127 (1994).

    CAS  Google Scholar 

  19. Tkatch, L.S., Rubin, K.A., Ziegler, S.F. & Tweardy, D.J. Modulation of human G-CSF receptor mRNA and protein in normal and leukemic myeloid cells by G-CSF and retinoic acid. J. Leukoc. Biol. 57, 964–971 (1995).

    Article  CAS  Google Scholar 

  20. Lin, F.T., MacDougald, O.A., Diehl, A.M. & Lane, M.D. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein α message: transcriptional activator lacking antimitotic activity. Proc. Natl Acad. Sci. USA 90, 9606–9610 (1993).

    Article  CAS  Google Scholar 

  21. Ossipow, V., Descombes, P. & Schibler, U. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc. Natl Acad. Sci. USA 90, 8219–8223 (1993).

    Article  CAS  Google Scholar 

  22. Calkhoven, C.F., Muller, C. & Leutz, A. Translational control of C/EBPα and C/EBPβ isoforms expression. Genes Dev. 14, 1920–1932 (2000).

    CAS  Google Scholar 

  23. van der Velden, A.W. & Thomas, A.A. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell. Biol. 31, 87–106 (1999).

    Article  Google Scholar 

  24. Kozak, M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc. Natl Acad. Sci. USA 92, 2662–2666 (1995).

    Article  CAS  Google Scholar 

  25. Ostareck-Lederer, A., Ostareck, D.H. & Hentze, M. W. Cytoplasmic regulatory functions of the KH-domain proteins hnRNP K and E1/E2. Trends Biochem. Sci. 23, 409–411 (1998).

    Article  CAS  Google Scholar 

  26. Zou, X. & Calame, K. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J. Biol. Chem. 274, 18141–18144 (1999).

    Article  CAS  Google Scholar 

  27. Zhang, D.E. et al. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr. Top. Microbiol. Immunol. 211, 137–147 (1996).

    CAS  Google Scholar 

  28. Bellon, T., Perrotti, D. & Calabretta, B. Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. Blood 90, 1828–1839 (1997).

    CAS  Google Scholar 

  29. Gaiger, A. et al. Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 86, 2371–2378 (1995).

    CAS  Google Scholar 

  30. Elmaagacli, A.H., Beelen, D.W., Opalka, B., Seeber, S. & Schaefer, U.W. The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Annu. Hematol. 79, 424–431 (2000).

    Article  CAS  Google Scholar 

  31. Kantarjian, H.M. et al. Chronic myelogenous leukemia in blast crisis: analysis of 242 patients. Am. J. Med. 83, 445–454 (1987).

    Article  CAS  Google Scholar 

  32. Cambier, N., Chopra, R., Strasser, A., Metcalf, D. & Elefanty, A.G. BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene 16, 335–348 (1998).

    Article  CAS  Google Scholar 

  33. Issaad, C. et al. Biological effects induced by variable levels of BCR-ABL protein in the pluripotent hematopoietic cell line UT-7. Leukemia 14, 662–670 (2000).

    Article  CAS  Google Scholar 

  34. Pabst, T. et al. AML-1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nature Med. 7, 444–451 (2001).

    Article  CAS  Google Scholar 

  35. Wong, K.K et al. v-Abl activates c-myc transcription through the E2F site. Mol. Cell. Biol. 15, 6535–6544 (1995).

    Article  CAS  Google Scholar 

  36. Dai, Z. et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev. 12, 1415–1424 (1998).

    Article  CAS  Google Scholar 

  37. Perrotti, D. et al. BCR-ABL prevents c-jun-mediated and proteasome-dependent FUS (TLS) proteolysis through a protein kinase CβII-dependent pathway. Mol. Cell. Biol. 20, 6159–6169 (2000).

    Article  CAS  Google Scholar 

  38. Ilaria, R.L. Jr, Hawley, R.G. & Van Etten, R.A. Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 93, 4154–4166 (1999).

    CAS  Google Scholar 

  39. Cazzola, M. & Skoda, R.C. Translational pathophysiology: a novel molecular mechanism of human disease. Blood 95, 3280–3288 (2000).

    CAS  Google Scholar 

  40. Thisted, T., Lyakhov, D.L. & Liebhaber, S.A. Optimized RNA targets of two closely-related triple KH-domains proteins, hnRNP K and aCP-2KL, suggest distinct modes of RNA recognition. J. Biol. Chem. 276, 17484–17496 (2001).

    Article  CAS  Google Scholar 

  41. Ostareck, D.H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  Google Scholar 

  42. Ostareck, D.H., Ostareck-Lederer, A., Shatsky, I.N. & Hentze, M.W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′ UTR regulatory complex controls 605 ribosomal subunit joining. Cell 104, 281–290 (2001).

    Article  CAS  Google Scholar 

  43. Collier, B., Goobar-Larsson, L., Sokolowski, M. & Schwartz, S. Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogeneous ribonucleoprotein K and Poly(rC)-binding proteins 1 and 2. J. Biol. Chem. 273, 22648–22656 (1998).

    Article  CAS  Google Scholar 

  44. Blyn, L.B., Towner, J.S., Semler, B.L. & Ehrenfeld, E. Requirement of poly(rC)-binding protein 2 for translation of poliovirus RNA. J. Virol. 71, 6243–6246 (1997).

    CAS  Google Scholar 

  45. Silvera, D., Gamernik, A.V. & Andino, R. The N-terminal K homology domain of the poly(rC)-binding protein is a major determinant for binding to the poliovirus 5′ untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem. 274, 38163–38170 (1999).

    Article  CAS  Google Scholar 

  46. Graff, J., Cha, J., Blyn, L.B. & Ehrenfeld, E. Interaction of poly(rC)-binding protein 2 with the 5? noncoding region of hepatitis A virus RNA and its effects on translation. J. Virol. 72, 9668–9675 (1998).

    CAS  Google Scholar 

  47. Pabst, T. et al. Dominant-negative mutations of C/EBPα, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nature Genet. 27, 263–270 (2001).

    Article  CAS  Google Scholar 

  48. Westendorf, J.J. et al. The t(8;21) fusion product, AML-1-ETO, associates with C/EBPα, inhibits C/EBPα-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18, 322–333 (1999).

    Article  Google Scholar 

  49. Thomson, A.M., Rogers, J.T., Walker, C.E., Staton, J.M. & Leedman, P.J. Optimized RNA gel-shift and UV crosslinking assays for characterization of cytoplasmic RNA-protein interactions. Biotechniques 27, 1032–1039 (1999).

    Article  Google Scholar 

  50. Gamarnik, A.V. & Andino, R. Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3, 882–892 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bergamaschi and P. Guaraldi for assistance in hnRNP E2 protein purification and REMSA assays; R. Martinez, D.G. Tenen and H. Radomska for helpful discussion; and A. Leutz for communicating his data on translational control of C/EBPα expression. R.T. is supported by a training grant from the National Institutes of Health. C.G. and G.S. were supported in part by the A. Serra Foundation for Cancer Research. This work was supported in part by grants from the NIH (B.C.), from CALGB (M.A.C.) and from the Associazione Italiana Per La Ricerca sul Cancro (C.G.-P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danilo Perrotti or Bruno Calabretta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrotti, D., Cesi, V., Trotta, R. et al. BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nat Genet 30, 48–58 (2002). https://doi.org/10.1038/ng791

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng791

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing