Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient Cre-loxP–induced mitotic recombination in mouse embryonic stem cells

Abstract

FLP/FRT-induced mitotic recombination provides a powerful method for creating genetic mosaics in Drosophila and for discerning the function of recessive genes in a heterozygous individual. Here we show that mitotic recombination can be reproducibly induced in mouse embryonic stem (ES) cells, by Cre/loxP technology, at frequencies ranging from 4.2 × 10−5 (Snrpn) to 7.0 × 10−3 (D7Mit178) for single allelic loxP sites, and to 5.0 × 10−2 (D7Mit178) for multiple allelic lox sites, after transient Cre expression. Notably, much of the recombination occurs in G2 and is followed by X segregation, where the recombinant chromatids segregate away from each other during mitosis. It is X segregation that is useful for genetic mosaic analysis because it produces clones of homozygous mutant daughter cells from heterozygous mothers. Our studies confirm the predictions made from studies in Drosophila1 that suggest that X segregation will not be limited to organisms with strong mitotic pairing, because the forces (sister-chromatid cohesion) responsible for X segregation are an elemental feature of mitosis in all eukaryotes. Our studies also show that genetic mosaic analysis in mice is feasible, at least for certain chromosomal regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombination cassettes, chromatid segregation patterns and targeted loci.
Figure 2: D7Mit178 recombination occurs in G2 and is followed by X segregation.
Figure 3: Segregation of D11Mit71 recombinant chromatids.
Figure 4: Multiple lox sites increase the frequency of Cre-induced mitotic recombination.
Figure 6: Mitotic chiasma formation directs recombinant chromatid segregation (adapted from Beumer et al.1).
Figure 5: Induced mitotic recombination under constitutive Cre expression.

Similar content being viewed by others

References

  1. Beumer, K.J., Pimpinelli, S. & Golic, K.G. Induced chromosomal exchange directs the segregation of recombinant chromatids in mitosis of Drosophila. Genetics 150, 173–188 (1998).

    CAS  PubMed Central  Google Scholar 

  2. Rossant, J. & Spence, A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 14, 358–363 (1998).

    Article  CAS  Google Scholar 

  3. Favor, J. & Neuhauser-Klaus, A. Genetic mosaicism in the house mouse. Annu. Rev. Genet. 28, 27–47 (1994).

    Article  CAS  Google Scholar 

  4. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  Google Scholar 

  5. Pimpinelli, S. & Ripoll, P. Nonrandom segregation of centromeres following mitotic recombination in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 83, 3900–3903 (1986).

    Article  CAS  Google Scholar 

  6. Stevens, N.M. A study of the germ cells of certain Diptera, with reference to the heterochromosomes and the phenomena of synapsis. J. Exp. Zool. 5, 359–383 (1908).

    Article  Google Scholar 

  7. Metz, C.W. Chromosome studies on the Diptera II: the paired association of chromosomes in the Diptera, and its significance. J. Exp. Zool. 21, 213–279 (1916).

    Article  Google Scholar 

  8. Golic, K.G. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).

    Article  CAS  Google Scholar 

  9. Xu, T., Wang, W., Zhang, S., Stewart, R.A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  Google Scholar 

  10. Cavenee, W.K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  Google Scholar 

  11. Mortensen, R.M., Conner, D.A., Chao, S., Geisterfer-Lowrance, A. & Seidman, J.G. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

    Article  CAS  Google Scholar 

  12. Shao, C. et al. Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice. Proc. Natl Acad. Sci. USA 96, 9230–9235 (1999).

    Article  CAS  Google Scholar 

  13. Bateman, A.J. A probable case of mitotic crossing-over in the mouse. Genet. Res. 9, 375 (1967).

    Article  CAS  Google Scholar 

  14. Panthier, J.J., Guenet, J.L., Condamine, H. & Jacob, F. Evidence for mitotic recombination in Wei/+ heterozygous mice. Genetics 125, 175–182 (1990).

    CAS  PubMed Central  Google Scholar 

  15. Fisher, G., Stephenson, D.A. & West, J.D. Investigation of the potential for mitotic recombination in the mouse. Mutat. Res. 164, 381–388 (1986).

    Article  CAS  Google Scholar 

  16. German, J. Cytological evidence for crossing-over in vitro in human lymphoid cells. Science 144, 298–301 (1964).

    Article  CAS  Google Scholar 

  17. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  Google Scholar 

  18. Johnson, R.D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    Article  CAS  Google Scholar 

  19. Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genet. 20, 381–384 (1998).

    Article  CAS  Google Scholar 

  20. Zheng, B., Sage, M., Sheppeard, E.A., Jurecic, V. & Bradley, A. Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20, 648–655 (2000).

    Article  CAS  Google Scholar 

  21. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  Google Scholar 

  22. Matzuk, M.M., Finegold, M.J., Su, J.G., Hsueh, A.J. & Bradley, A. α-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  CAS  Google Scholar 

  23. Yang, T. et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nature Genet. 19, 25–31 (1998).

    Article  CAS  Google Scholar 

  24. Gabriel, J.M. et al. A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and angelman syndromes. Proc. Natl Acad. Sci. USA 96, 9258–9263 (1999).

    Article  CAS  Google Scholar 

  25. Baubonis, W. & Sauer, B. Genomic targeting with purified Cre recombinase. Nucleic Acids Res. 21, 2025–2029 (1993).

    Article  CAS  Google Scholar 

  26. Riesselmann, L. & Haaf, T. Preferential S-phase pairing of the imprinted region on distal mouse chromosome 7. Cytogenet. Cell Genet. 86, 39–42 (1999).

    Article  CAS  Google Scholar 

  27. LaSalle, J. M. & Lalande, M. Homologous association of oppositely imprinted chromosomal domains. Science 272, 725–728 (1996).

    Article  CAS  Google Scholar 

  28. Araki, K., Araki, M. & Yamamura, K. Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. 25, 868–872 (1997).

    Article  CAS  Google Scholar 

  29. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  Google Scholar 

  30. Cattanach, B.M. & Jones, J. Genetic imprinting in the mouse: implications for gene regulation. J. Inherit. Metab. Dis. 17, 403–420 (1994).

    Article  CAS  Google Scholar 

  31. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bradley for providing AB2.2 ES cells, STO feeder cells, an HPRT1 minigene, a D11Mit71 genomic fragment and PolII-neor and puro selection cassettes, and C. Brannan for the Snrpn promoter probe. We also thank W.F. Dove, who provided the inspiration for these experiments. This research was supported by the National Cancer Institute, Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal G. Copeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Jenkins, N. & Copeland, N. Efficient Cre-loxP–induced mitotic recombination in mouse embryonic stem cells. Nat Genet 30, 66–72 (2002). https://doi.org/10.1038/ng788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing