Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer

Abstract

Inheritance of one defective BRCA2 allele predisposes humans to breast cancer. To establish a mouse model for BRCA2-associated breast cancer, we generated mouse conditional mutants with BRCA2 and/or p53 inactivated in various epithelial tissues, including mammary-gland epithelium. Although no tumors arose in mice carrying conditional Brca2 alleles, mammary and skin tumors developed frequently in females carrying conditional Brca2 and Trp53 alleles. The presence of one wildtype Brca2 allele resulted in a markedly delayed tumor formation; loss of the wildtype Brca2 allele occurred in a subset of these tumors. Our results show that inactivation of BRCA2 and of p53 combine to mediate mammary tumorigenesis, and indicate that disruption of the p53 pathway is pivotal in BRCA2-associated breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and functional analysis of the Brca2 conditional mutation.
Figure 2: Generation and functional analysis of the Trp53 conditional mutation.
Figure 3: Cre recombinase activity in epithelial tissues of K14cre transgenic mice.
Figure 4: Incidence and spectrum of tumors in K14cre females carrying conditional Brca2 and Trp53 alleles.
Figure 5: Histopathology of mammary tumors from K14cre females carrying conditional Brca2 and Trp53 alleles.
Figure 6: Histopathology of skin lesions from K14cre mice carrying conditional Brca2 and Trp53 alleles.
Figure 7: Brca2 and Trp53 gene inactivation in mammary tumors.

Similar content being viewed by others

References

  1. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article  CAS  Google Scholar 

  2. Scully, R. & Livingston, D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  Google Scholar 

  3. Venkitaraman, A.R. The breast cancer susceptibility gene, BRCA2: at the crossroads between DNA replication and recombination? Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 191–198 (2000).

    Article  CAS  Google Scholar 

  4. Yu, V.P. et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel, K.J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  Google Scholar 

  6. Moynahan, M.E., Pierce, A.J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  Google Scholar 

  7. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    Article  CAS  Google Scholar 

  8. Marmorstein, L.Y. et al. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104, 247–257 (2001).

    Article  CAS  Google Scholar 

  9. Chen, P.L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl Acad. Sci. USA 95, 5287–5292 (1998).

    Article  CAS  Google Scholar 

  10. Marmorstein, L.Y., Ouchi, T. & Aaronson, S.A. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl Acad. Sci. USA 95, 13869–13874 (1998).

    Article  CAS  Google Scholar 

  11. Wong, A.K., Pero, R., Ormonde, P.A., Tavtigian, S.V., & Bartel, P.L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene Brca2. J. Biol. Chem. 272, 31941–31944 (1997).

    Article  CAS  Google Scholar 

  12. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  CAS  Google Scholar 

  13. Davies, A.A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  Google Scholar 

  14. Ludwig, T., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226–1241 (1997).

    Article  CAS  Google Scholar 

  15. Suzuki, A. et al. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242–1252 (1997).

    Article  CAS  Google Scholar 

  16. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17, 423–430 (1997).

    Article  CAS  Google Scholar 

  17. Friedman, L.S. et al. Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338–1343 (1998).

    CAS  PubMed  Google Scholar 

  18. Crook, T. et al. p53 mutation with frequent novel codons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17, 1681–1689 (1998).

    Article  CAS  Google Scholar 

  19. Ramus, S.J. et al. Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosom. Cancer 25, 91–96 (1999).

    Article  CAS  Google Scholar 

  20. Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10 (1999).

    Article  CAS  Google Scholar 

  21. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  Google Scholar 

  22. Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl Acad. Sci. USA 86, 1563–1567 (1989).

    Article  CAS  Google Scholar 

  23. Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

    Article  CAS  Google Scholar 

  24. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  Google Scholar 

  25. Rajewsky, K. et al. Conditional gene targeting. J. Clin. Invest 98, 600–603 (1996).

    Article  CAS  Google Scholar 

  26. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  27. Brugarolas, J. & Jacks, T. Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair. Nature Med. 3, 721–722 (1997).

    Article  CAS  Google Scholar 

  28. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  29. Harvey, M. et al. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  Google Scholar 

  30. Harvey, M., McArthur, M.J., Montgomery, C.A., Bradley, A. & Donehower, L.A. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 7, 938–943 (1993).

    Article  CAS  Google Scholar 

  31. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  32. Purdie, C.A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  33. Wagner, K.U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    Article  CAS  Google Scholar 

  34. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  35. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    Article  CAS  Google Scholar 

  36. Kinzler, K.W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  CAS  Google Scholar 

  37. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  38. Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J. Natl Cancer Inst. 91, 1310–1316 (1999).

  39. Berneburg, M. & Lehmann, A.R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43, 71–102 (2001).

    Article  CAS  Google Scholar 

  40. Bogliolo, M., Taylor, R.M., Caldecott, K.W. & Frosina, G. Reduced ligation during DNA base excision repair supported by BRCA2 mutant cells. Oncogene 19, 5781–5787 (2000).

    Article  CAS  Google Scholar 

  41. Cavalieri, E., Frenkel, K., Liehr, J.G., Rogan, E. & Roy, D. Estrogens as endogenous genotoxic agents—DNA adducts and mutations. J. Natl Cancer Inst. Monogr. 75–93 (2000).

  42. Liehr, J.G. Is estradiol a genotoxic mutagenic carcinogen? Endocr. Rev. 21, 40–54 (2000).

    CAS  PubMed  Google Scholar 

  43. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

    Article  CAS  Google Scholar 

  44. O'Gorman, S., Dagenais, N.A., Qian, M. & Marchuk, Y. Protamine–Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl Acad. Sci. USA 94, 14602–14607 (1997).

    Article  CAS  Google Scholar 

  45. Munz, B. et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J. 18, 5205–5215 (1999).

    Article  CAS  Google Scholar 

  46. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, 1994).

    Google Scholar 

  47. van der Putten, H., Terwindt, E., Berns, A. & Jaenisch, R. The integration sites of endogenous and exogenous Moloney murine leukemia virus. Cell 18, 109–116 (1979).

    Article  CAS  Google Scholar 

  48. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  49. Sambrook, J., Fritsch, E.F., & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  50. Rasmussen, S.B., Young, L.J. & Smith, G.H. Preparing mammary gland whole mounts from mice. in Methods in Mammary Gland Biology and Cancer Research (eds. Ip, M.M. & Asch, B.B.) 75–85 (Kluwer Academic/Plenum, New York, 2000).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank K. Rajewsky for Cre deleter mice, P. Soriano for R26R Cre reporter–bearing mice, S. Werner for the K14 promoter construct, R. Fassler and S. O'Gorman for cre–loxP plasmids, K. van Veen-Buurman and K. van 't Wout for zygote and blastocyst injections, F. Matthesius for assistance in genotyping the mice, J. Bulthuis, K. de Goeij, D. Hoogervorst and M. Tjin-a-Koeng for histotechnical assistance, N. Bosnie, S. Greven, A. Lagro and A. Zwerver for animal care, C. Ruivenkamp for statistical analysis and A. Loonstra, H. te Riele and M. Vooijs for critically reading the manuscript. This work was supported by funding from the Dutch Cancer Society (J.J. and R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Berns.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonkers, J., Meuwissen, R., van der Gulden, H. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29, 418–425 (2001). https://doi.org/10.1038/ng747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing