Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinoic acid rescues inner ear defects in Hoxa1 deficient mice

Abstract

Little is known about the genetic pathways involved in the early steps of inner ear morphogenesis. Hoxa1 is transiently expressed in the developing hindbrain; its targeted inactivation in mice results in severe abnormalities of the otic capsule and membranous labyrinth 1. Here we show that a single maternal administration of a low dose of the vitamin A metabolite retinoic acid is sufficient to compensate the requirement for Hoxa1 function. It rescues cochlear and vestibular defects in mutant fetuses without affecting the development of the wildtype fetuses. These results identify a temporal window of susceptibility to retinoids that is critical for mammalian inner ear specification, and provide the first evidence that a subteratogenic dose of vitamin A derivative can be effective in rescuing a congenital defect in the mammalian embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue of auditory capsule skeletal morphology.
Figure 2: Rescue of epithelial inner ear morphogenesis.
Figure 3: Rescue of inner ear histological organization.
Figure 4: Molecular rescue of inner ear structures.
Figure 5: Transient Hoxb1 response to 5RA treatment.
Figure 6: Molecular rescue in the rhombomere (r)5-r6 region of 5RA-treated mutants.

Similar content being viewed by others

References

  1. Mark, M. et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).

    CAS  PubMed  Google Scholar 

  2. Cantos, R., Cole, L.K., Acampora, D., Simeone, A. & Wu, D.K. Patterning of the mammalian cochlea. Proc. Natl. Acad. Sci. USA 97, 11707–11713 (2000).

    Article  CAS  Google Scholar 

  3. Torres, M. & Giraldez, F. The development of the vertebrate inner ear. Mech. Dev. 71, 5–21 (1998).

    Article  CAS  Google Scholar 

  4. Van de Water, T.R. & Conley, X. Neural inductive message to the developing mammalian inner ear: contact mediated versus extracelular marix interaction. Anat. Rec. 195A (1982).

  5. Yntema, C.L. An analysis of induction of the ear from foreign ectoderm in the salamander embryo. J. Exp. Zool. 113, 211–244 (1950).

    Article  Google Scholar 

  6. McKay, I.J. et al. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211 (1994).

    CAS  PubMed  Google Scholar 

  7. Frohman, M.A., Martin, G.R., Cordes, S.P., Halamek, L.P. & Barsh, G.S. Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117, 925–936 (1993).

    CAS  PubMed  Google Scholar 

  8. McKay, I.J., Lewis, J. & Lumsden, A. The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev. Biol. 174, 370–378 (1996).

    Article  CAS  Google Scholar 

  9. Mansour, S.L., Goddard, J.M. & Capecchi, M.R. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28 (1993).

    CAS  PubMed  Google Scholar 

  10. Groves, A.K. & Bronner-Fraser, M. Competence, specification and commitment in otic placode induction. Development 127, 3489–3499 (2000).

    CAS  PubMed  Google Scholar 

  11. Carpenter, E.M., Goddard, J.M., Chisaka, O., Manley, N.R. & Capecchi, M.R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075 (1993).

    CAS  PubMed  Google Scholar 

  12. Fekete, D.M. Development of the vertebrate ear: insights from knockouts and mutants. Trends Neurosci. 22, 263–269 (1999).

    Article  CAS  Google Scholar 

  13. Dupe, V. et al. In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′ RARE). Development 124, 399–410 (1997).

    CAS  PubMed  Google Scholar 

  14. Marshall, H., Morrison, A., Studer, M., Popperl, H. & Krumlauf, R. Retinoids and Hox genes. FASEB J. 10, 969–978 (1996).

    Article  CAS  Google Scholar 

  15. Dupe, V., Ghyselinck, N.B., Wendling, O., Chambon, P. & Mark, M. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126, 5051–5059 (1999).

    CAS  PubMed  Google Scholar 

  16. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development [see comments]. Nature Genet. 21, 444–448 (1999).

    Article  CAS  Google Scholar 

  17. Studer, M. et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125, 1025–1036 (1998).

    CAS  PubMed  Google Scholar 

  18. Choo, D., Sanne, J.L. & Wu, D.K. The differential sensitivities of inner ear structures to retinoic acid during development. Dev. Biol. 204, 136–150 (1998).

    Article  CAS  Google Scholar 

  19. Frenz, D.A., Liu, W., Galinovic-Schwartz, V. & Van De Water, T.R. Retinoic acid-induced embryopathy of the mouse inner ear. Teratology 53, 292–303 (1996).

    Article  CAS  Google Scholar 

  20. Ross, S.A., McCaffery, P.J., Drager, U.C. & De Luca, L.M. Retinoids in embryonal development. Physiol. Rev. 80, 1021–1054 (2000).

    Article  CAS  Google Scholar 

  21. Collins, M.D. & Mao, G.E. Teratology of retinoids. Annu. Rev. Pharmacol. Toxicol. 39, 399–430 (1999).

    Article  CAS  Google Scholar 

  22. Sulik, K.K., Cook, C.S. & Webster, W.S. Teratogens and craniofacial malformations: relationships to cell death. Development 103, 213–231 (1988).

    CAS  PubMed  Google Scholar 

  23. Kessel, M. & Gruss, P. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89–104 (1991).

    Article  CAS  Google Scholar 

  24. Morriss-Kay, G.M., Murphy, P., Hill, R.E. & Davidson, D.R. Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J. 10, 2985–2995 (1991).

    Article  CAS  Google Scholar 

  25. Conlon, R.A. & Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368 (1992).

    CAS  PubMed  Google Scholar 

  26. Simeone, A. et al. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev. 51, 83–98 (1995).

    Article  CAS  Google Scholar 

  27. Sulik, K.K., Dehart, D.B., Rogers, J.M. & Chernoff, N. Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51, 398–403 (1995).

    Article  CAS  Google Scholar 

  28. Morsli, H., Choo, D., Ryan, A., Johnson, R. & Wu, D.K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327–35 (1998).

    Article  CAS  Google Scholar 

  29. Morrison, A., Hodgetts, C., Gossler, A., Hrabe de Angelis, M. & Lewis, J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech. Dev. 84, 169–172 (1999).

    Article  CAS  Google Scholar 

  30. Kiernan, A.E. et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. USA 98, 3873–3878 (2001).

    Article  CAS  Google Scholar 

  31. Levy, E., Liem, R.K., D'Eustachio, P. & Cowan, N.J. Structure and evolutionary origin of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein. Eur. J. Biochem. 166, 71–77 (1987).

    Article  CAS  Google Scholar 

  32. Verpy, E., Leibovici, M. & Petit, C. Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals. Proc. Natl. Acad. Sci. USA 96, 529–34 (1999).

    Article  CAS  Google Scholar 

  33. Torres, M., Gomez-Pardo, E. & Gruss, P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381–3391 (1996).

    CAS  PubMed  Google Scholar 

  34. Wilkinson, D.G., Bhatt, S., Cook, M., Boncinelli, E. & Krumlauf, R. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409 (1989).

    Article  CAS  Google Scholar 

  35. Cordes, S.P. & Barsh, G.S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    Article  CAS  Google Scholar 

  36. Wilkinson, D.G., Peters, G., Dickson, C. & McMahon, A.P. Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J. 7, 691–695 (1988).

    Article  CAS  Google Scholar 

  37. Gavalas, A. et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125, 1123–1136 (1998).

    CAS  PubMed  Google Scholar 

  38. Zhang, M. et al. Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442 (1994).

  39. Brigande, J.V., Kiernan, A.E., Gao, X., Iten, L.E. & Fekete, D.M. Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc. Natl. Acad. Sci. USA 97, 11700–11706 (2000).

    Article  CAS  Google Scholar 

  40. Vendrell, V., Carnicero, E., Giraldez, F., Alonso, M.T. & Schimmang, T. Induction of inner ear fate by FGF3. Development 127, 2011–2019 (2000).

    CAS  PubMed  Google Scholar 

  41. Ladher, R.K., Anakwe, K.U., Gurney, A.L., Schoenwolf, G.C. & Francis-West, P.H. Identification of synergistic signals initiating inner ear development. Science 290, 1965–1967 (2000).

    Article  CAS  Google Scholar 

  42. Pirvola, U. et al. FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J. Neurosci. 20, 6125–6134 (2000).

    Article  CAS  Google Scholar 

  43. Rossel, M. & Capecchi, M.R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126, 5027–5040 (1999).

    CAS  PubMed  Google Scholar 

  44. Murakami, A., Thurlow, J. & Dickson, C. Retinoic acid-regulated expression of fibroblast growth factor 3 requires the interaction between a novel transcription factor and GATA- 4. J. Biol.Chem. 274, 17242–17248 (1999).

    Article  CAS  Google Scholar 

  45. Brigande, J.V., Iten, L.E. & Fekete, D.M. A fate map of chick otic cup closure reveals lineage boundaries in the dorsal otocyst. Dev. Biol. 227, 256–270 (2000).

    Article  CAS  Google Scholar 

  46. Gale, E., Zile, M. & Maden, M. Hindbrain respecification in the retinoid-deficient quail. Mech. Dev. 89, 43–54 (1999).

    Article  CAS  Google Scholar 

  47. Trainor, P. & Krumlauf, R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nature Cell. Biol. 2, 96–102 (2000).

    Article  CAS  Google Scholar 

  48. Soprano, D.R. et al. A sustained elevation in retinoic acid receptor-beta 2 mRNA and protein occurs during retinoic acid-induced fetal dysmorphogenesis. Mech. Dev. 45, 243–253 (1994).

    Article  CAS  Google Scholar 

  49. Pasqualetti, M., Ori, M., Nardi, I. & Rijli, F.M. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127, 5367–5378 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Chambon, M. Mallo, M. Leid, O. Abdel-Samad and the referees for insightful comments on an earlier version of this manuscript. We are grateful to M. Poulet and T. Ding for excellent technical assistance. We wish to thank J-L. Vonesch and D. Hentsch for valuable help with imaging. We acknowledge the following colleagues for kind gifts of reagents: P. Chambon, R. Krumlauf, P. Gruss, D. Henrique, C. Petit and D.Wilkinson. M.P. was supported by fellowships from the European Commission (EEC), EMBO, and Association pour la Recherche sur le Cancer. R.N. was supported by DAAD and Fondation pour la Recherche Médicale (FRM) fellowships. M.D. was supported by fellowships from the Ligue Nationale Contre le Cancer and FRM. This work was supported by grants to F.M.R. from the EEC Quality of Life Program, the Association pour la Recherche sur le Cancer, the Ministère pour le Recherche and by institutional funds from CNRS, INSERM and Hôpital Universitaire de Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo M. Rijli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualetti, M., Neun, R., Davenne, M. et al. Retinoic acid rescues inner ear defects in Hoxa1 deficient mice. Nat Genet 29, 34–39 (2001). https://doi.org/10.1038/ng702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing