Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution

Abstract

Surveys of protein-coding sequences for evidence of positive selection in humans or chimpanzees have flagged only a few genes known to function in neural or nutritional processes1,2,3,4,5, despite pronounced differences between humans and chimpanzees in behavior, cognition and diet6,7,8. It may be that most such differences are due to changes in gene regulation rather than protein structure9. Here, we present the first survey of promoter (5′-flanking) regions, which are rich in cis-regulatory sequences, for evidence of positive selection in humans. Our results indicate that positive selection has targeted the regulation of many genes known to be involved in neural development and function, both in the brain and elsewhere in the nervous system, and in nutrition, particularly in glucose metabolism.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genes and models.
Figure 2: Positive selection in chimpanzees versus humans.

References

  1. Clark, A.G. et al. Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302, 1960–1963 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bustamante, C.D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  4. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005) (doi:10.1371/journal.pbio.0030170).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, X.-J., Zheng, H.-K., Wang, J., Wang, W. & Su, B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88, 745–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson-Frey, S.H. What's so special about human tool use? Neuron 39, 201–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Arcadi, A.C. Language evolution: What do chimpanzees have to say? Curr. Biol. 15, R884–R886 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ungar, P.S. (ed.). Evolution of the Human Diet: the Known, the Unknown, and the Unknowable (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  9. King, M.-C. & Wilson, A.C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Vallender, E.J. & Lahn, B.T. Positive selection on the human genome. Hum. Mol. Genet. 13, R245–R254 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Sabeti, P.C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wray, G.A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Rockman, M.V. et al. Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol. 3, e387 (2005) (doi:10.1371/journal.pbio.0030387).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tishkoff, S.A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006) (doi:10.1371/journal.pbio.0040072).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, E.T., Kodama, G., Baldi, P. & Moyzis, R.K. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA 103, 135–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Pollard, K.S. et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2, e168 (2006) (doi:10.1371/journal.pgen.0020168).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prabhakar, S., Noonan, J.P., Pääbo, S. & Rubin, E.M. Accelerated evolution of conserved noncoding sequences in humans. Science 314, 786 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Blanchette, M. et al. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res. 16, 656–668 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crawford, G.E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Majewski, J. & Ott, J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 12, 1827–1836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorek, R. & Ast, G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res. 13, 1631–1637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hellmann, I. et al. Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res. 13, 831–837 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keightley, P.D., Lercher, M.J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PloS Biol. 3, e42 (2005) (doi:10.1371/journal.pbio.0030042).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong, W.S.W. & Nielsen, R. Detecting selection in noncoding regions of nucleotide sequences. Genetics 167, 949–958 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olson, M.V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nat. Rev. Genet. 4, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Loftus, S.K. et al. Acinar cell apoptosis in Serpini2-deficient mice models pancreatic insufficiency. PLoS Genet. 1, e38 (2005) (doi:10.1371/journal.pgen.0010038).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khaitovich, P. et al. Toward a neutral evolutionary model of gene expression. Science 309, 1850–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Pavisic and T. Severson for assistance with gene annotations; G. Barber, M. Diekhans, W. Kent, S. Kosakovsky Pond and W. Miller for advice about their software; F. Hsu, K. Rosenbloom and A. Zweig for advice about UCSC resources and J. Horvath, J. Pritchard, M. Turelli, H. Willard and members of the G. Wray laboratory for comments on the manuscript. Most of the computations were performed on the Duke Shared Cluster Resource, which is maintained by the Duke Center for Computational Science, Engineering and Medicine. This research was supported by the Duke Institute for Genome Sciences and Policy and a US National Science Foundation Postdoctoral Fellowship in Biological Informatics to R.H. (grant number 0434655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Haygood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

A fuller presentation of our models. (XLS 38 kb)

Supplementary Table 2

Basic results, human lineage, passing cutoffs. (XLS 2487 kb)

Supplementary Table 3

Basic results, human lineage, failing cutoffs. (XLS 1608 kb)

Supplementary Table 4

Basic results, chimpanzee lineage, passing cutoffs. (XLS 2480 kb)

Supplementary Table 5

Basic results, chimpanzee lineage, failing cutoffs. (XLS 1599 kb)

Supplementary Table 6

Further analyses of PANTHER biological process categories. (XLS 59 kb)

Supplementary Text and Figures

Supplementary Discussion (PDF 472 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haygood, R., Fedrigo, O., Hanson, B. et al. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 39, 1140–1144 (2007). https://doi.org/10.1038/ng2104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing