Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis

Abstract

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular genetic analysis of the LCA5 gene in families affected with LCA.
Figure 2: Analysis of Lca5 expression in mouse embryos and adult eyes by mRNA in situ hybridization.
Figure 3: Localization of lebercilin to cilia of cultured cells and mouse photoreceptor connecting cilia.
Figure 4: Subcellular localization of recombinant lebercilin-eYFP in cultured mammalian cells.
Figure 5: Analysis of the lebercilin interactome in porcine retina.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Dharmaraj, S. et al. A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am. J. Hum. Genet. 66, 319–326 (2000).

    Article  CAS  Google Scholar 

  2. Mohamed, M.D. et al. Progression of phenotype in Leber's congenital amaurosis with a mutation at the LCA5 locus. Br. J. Ophthalmol. 87, 473–475 (2003).

    Article  CAS  Google Scholar 

  3. Ostrowski, L.E. et al. A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteomics 1, 451–465 (2002).

    Article  CAS  Google Scholar 

  4. Gherman, A., Davis, E.E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  5. Giessl, A. et al. Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells. J. Biol. Chem. 279, 51472–51481 (2004).

    Article  CAS  Google Scholar 

  6. Guarguaglini, G. et al. The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol. Biol. Cell 16, 1095–1107 (2005).

    Article  CAS  Google Scholar 

  7. Quintyne, N.J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  Google Scholar 

  8. Burakov, A., Nadezhdina, E., Slepchenko, B. & Rodionov, V. Centrosome positioning in interphase cells. J. Cell Biol. 162, 963–969 (2003).

    Article  CAS  Google Scholar 

  9. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  10. Shinmura, K., Tarapore, P., Tokuyama, Y., George, K.R. & Fukasawa, K. Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett. 579, 6621–6634 (2005).

    Article  CAS  Google Scholar 

  11. Ma, Z. et al. Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol. Cell. Biol. 26, 9016–9034 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, H. et al. B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J. Biol. Chem. 279, 35726–35734 (2004).

    Article  CAS  Google Scholar 

  13. Shu, X. et al. RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum. Mol. Genet. 14, 1183–1197 (2005).

    Article  CAS  Google Scholar 

  14. Ginisty, H., Sicard, H., Roger, B. & Bouvet, P. Structure and functions of nucleolin. J. Cell Sci. 112, 761–772 (1999).

    CAS  PubMed  Google Scholar 

  15. Li, D., Dobrowolska, G. & Krebs, E.G. The physical association of casein kinase 2 with nucleolin. J. Biol. Chem. 271, 15662–15668 (1996).

    Article  CAS  Google Scholar 

  16. Hollander, B.A., Liang, M.Y. & Besharse, J.C. Linkage of a nucleolin-related protein and casein kinase II with the detergent-stable photoreceptor cytoskeleton. Cell Motil. Cytoskeleton 43, 114–127 (1999).

    Article  CAS  Google Scholar 

  17. Lim, A.C., Tiu, S.Y., Li, Q. & Qi, R.Z. Direct regulation of microtubule dynamics by protein kinase CK2. J. Biol. Chem. 279, 4433–4439 (2004).

    Article  CAS  Google Scholar 

  18. Faust, M., Gunther, J., Morgenstern, E., Montenarh, M. & Gotz, C. Specific localization of the catalytic subunits of protein kinase CK2 at the centrosomes. Cell. Mol. Life Sci. 59, 2155–2164 (2002).

    Article  CAS  Google Scholar 

  19. Schermer, B. et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. 24, 4415–4424 (2005).

    Article  CAS  Google Scholar 

  20. Hu, J., Bae, Y.K., Knobel, K.M. & Barr, M.M. Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 17, 2200–2211 (2006).

    Article  CAS  Google Scholar 

  21. Mhawech, P. 14–3-3 proteins—an update. Cell Res. 15, 228–236 (2005).

    Article  CAS  Google Scholar 

  22. Pietromonaco, S.F., Seluja, G.A., Aitken, A. & Elias, L. Association of 14–3-3 proteins with centrosomes. Blood Cells Mol. Dis. 22, 225–237 (1996).

    Article  CAS  Google Scholar 

  23. Chen, C.Y., Olayioye, M.A., Lindeman, G.J. & Tang, T.K. CPAP interacts with 14–3-3 in a cell cycle-dependent manner. Biochem. Biophys. Res. Commun. 342, 1203–1210 (2006).

    Article  CAS  Google Scholar 

  24. Chang, B. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847–1857 (2006).

    Article  CAS  Google Scholar 

  25. den Hollander, A.I. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet. 79, 556–561 (2006).

    Article  CAS  Google Scholar 

  26. Sayer, J.A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  Google Scholar 

  27. Valente, E.M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623–625 (2006).

    Article  CAS  Google Scholar 

  28. van Wijk, E. et al. The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1. Hum. Mol. Genet. 15, 751–765 (2006).

    Article  CAS  Google Scholar 

  29. Roepman, R. et al. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc. Natl. Acad. Sci. USA 102, 18520–18525 (2005).

    Article  CAS  Google Scholar 

  30. Brandstatter, J.H., Koulen, P., Kuhn, R., van der, P.H. & Wassle, H. Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J. Neurosci. 16, 4749–4756 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the LCA families for their participation; H. Brunner, C. Johnson, N. Knoers and H. Kremer for discussions; C.J. Gloeckner for the TAPe constructs; T. Goldmann, E. Sehn, J. Hehir-Kwa, I. Janssen, K. Voesenek, A. Schumacher and S. Schöffmann for technical assistance; K. Klima, R. Pigeon and C. Robert for organizing the clinical data from affected individuals; S. Yzer, L.I. van den Born, S. Kohl, B. Wissinger, E. de Baere, B.P. Leroy, W. Bergen, K. Rohrschneider and C.B. Hoyng for sharing patient samples; and the Marshfield Mammalian Genotyping Service for carrying out genotyping in the Pakistani families. This research was supported by grants from The Netherlands Organisation for Scientific Research (916.56.160 to A.I.d.H.); the Foundation Fighting Blindness USA (BR-GE-0606-0349-RAD to A.I.d.H.); the Dutch Kidney Foundation (C04.2112 to R.R.); Landelijke Stichting voor Blinden en Slechtzienden (to A.I.d.H. and F.P.M.C.); Algemene Nederlandse Vereniging ter Voorkoming van Blindheid (to A.I.d.H., R.R. and F.P.M.C); Rotterdamse Vereniging Blindenbelangen (to R.R. and F.P.M.C.); Stichting Blindenhulp (to R.R. and F.P.M.C.); Stichting OOG (to R.R. and F.P.M.C.); the British Retinitis Pigmentosa Society (GR552 to R.R.); the European Union 6th Framework RETNET (MRTNCT-2003-504003 to F.P.M.C. and M.U.), EVI-GENORET (LSHG-CT-2005 512036 to M.U., F.P.M.C. and R.R.) and INTERACTION PROTEOME (LSHG-CT-2003-505520 to M.U.); the Wellcome Trust (061682 and 073477 to C.F.I. and M.D.M., and 068579 to M.E.C.); Yorkshire Eye Research (006 to C.F.I.); the Foundation Fighting Blindness Canada (to R.K.K. and F.P.M.C.); the Fonds de la Recherche en Santé Québec; TD Financial Group (to R.K.K.); Foundation of Retinal Research; The Grousbeck Foundation; The Edel and Krieble Funds; the Ort Family Foundation (to I.H.M., S.D. and R.K.K.); Pro Retina Germany (to M.U. and R.R.); Deutsche Forschungsgemeinschaft (Wo 548-6 to U.W.), FAUN-Stiftung (to U.W.) and Forschung contra Blindheit (to U.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneke I den Hollander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequences of LCA5 mutations identified in LCA families. (PDF 26 kb)

Supplementary Fig. 2

Evolutionary conservation of lebercilin and C21ORF13 proteins. (PDF 21 kb)

Supplementary Fig. 3

Expression of the LCA5 gene in human tissues and mammalian cell lines, and detection of lebercilin in mouse tissues. (PDF 467 kb)

Supplementary Fig. 4

Expression of the recombinant lebercilin proteins in ARPE-19 and COS-1 cells. (PDF 328 kb)

Supplementary Fig. 5

Expression of the TAPe constructs and immunoprecipitation of lebercilin. (PDF 422 kb)

Supplementary Table 1

Refinement of the LCA5 interval in three Pakistani LCA families. (PDF 49 kb)

Supplementary Table 2

Homozygous chromosomal regions in patients 27240 and 28609. (PDF 46 kb)

Supplementary Table 3

Protein/peptide summaries of LC-MSMS analysis of tandem affinity-purified lebercilin protein complexes. (PDF 489 kb)

Supplementary Table 4

Primer sequences for amplification of the exons and splice junctions of the LCA5 gene. (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Hollander, A., Koenekoop, R., Mohamed, M. et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 39, 889–895 (2007). https://doi.org/10.1038/ng2066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing