Abstract
FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kaiser, K. From gene to phenotype in Drosophila and other organisms. Bioessays 12, 297–301 (1990).
Adams, M.D. & Sekelsky, J.J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat. Rev. Genet. 3, 189–198 (2002).
Orkin, S.H. Reverse genetics and human disease. Cell 47, 845–850 (1986).
Ruddle, F.H. Reverse genetics as a means of understanding and treating genetic disease. Adv. Neurol. 35, 239–242 (1982).
Bargmann, C.I. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol. 2, REVIEWS1005 (2001).
Brown, S.D.M. & Peters, J. Combining mutagenesis and genomics in the mouse–closing the phenotype gap. Trends Genet. 12, 433–435 (1996).
Bullard, D.C. Mind the phenotype gap. Trends Mol. Med. 7, 537–538 (2001).
Dow, J.A.T. The Drosophila phenotype gap - and how to close it. Brief. Funct. Genomic. Proteomic. 2, 121–127 (2003).
Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).
Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002).
Andrews, J. et al. Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res. 10, 2030–2043 (2000).
Krogh, A. The progress of physiology. Am. J. Physiol. 90, 243–251 (1929).
Brand, A.H. & Perrimon, N. Targetted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).
Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692 (1998).
Emery, P., So, W.V., Kaneko, M., Hall, J.C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998).
Ivanchenko, M., Stanewsky, R. & Giebultowicz, J.M. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J. Biol. Rhythms 16, 205–215 (2001).
Giebultowicz, J.M., Stanewsky, R., Hall, J.C. & Hege, D.M. Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr. Biol. 10, 107–110 (2000).
Carthew, R.W. Adhesion proteins and the control of cell shape. Curr. Opin. Genet. Dev. 15, 358–363 (2005).
Graham, L.A. & Davies, P.L. The odorant-binding proteins of Drosophila melanogaster: annotation and characterization of a divergent gene family. Gene 292, 43–55 (2002).
Hekmat-Scafe, D.S., Scafe, C.R., McKinney, A.J. & Tanouye, M.A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 12, 1357–1369 (2002).
Dominguez, M., Ferres-Marco, D., Gutierrez-Avino, F.J., Speicher, S.A. & Beneyto, M. Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat. Genet. 36, 31–39 (2004).
Aldaz, S., Morata, G. & Azpiazu, N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development 130, 4473–4482 (2003).
Jimenez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J. 14, 3487–3495 (1995).
Robinson, D.N. & Cooley, L. Drosophila kelch is an oligomeric ring canal actin organizer. J. Cell Biol. 138, 799–810 (1997).
Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet. 26, 370–374 (2000).
Chien, S., Reiter, L.T., Bier, E. & Gribskov, M. Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res. 30, 149–151 (2002).
Byers, D., Davis, R.L. & Kiger, J.A. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81 (1981).
Konopka, R.J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112–2116 (1971).
Salkoff, L. & Wyman, R. Genetic modification of potassium channels in Drosophila Shaker mutants. Nature 293, 228–230 (1981).
Dow, J.A.T. & Davies, S.A. The Malpighian tubule: rapid insights from post-genomic biology. J. Insect Physiol. 52, 365–378 (2006).
Yang, J. et al. A Drosophila systems approach to xenobiotic metabolism. Physiol. Genomics published online 8 May 2007 (doi:10.1152/physiolgenomics.00018.2007).
McGettigan, J. et al. Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochem. Mol. Biol. 35, 741–754 (2005).
Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 7, 715–723 (2006).
Davies, S.A. et al. Analysis and inactivation of vha55, the gene encoding the V-ATPase B-subunit in Drosophila melanogaster, reveals a larval lethal phenotype. J. Biol. Chem. 271, 30677–30684 (1996).
Allan, A.K., Du, J., Davies, S.A. & Dow, J.A.T. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol. Genomics 22, 128–138 (2005).
Karet, F.E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).
Evans, J.M., Allan, A.K., Davies, S.A. & Dow, J.A.T. Sulphonylurea sensitivity and enriched expression implicate inward rectifier K+ channels in Drosophila melanogaster renal function. J. Exp. Biol. 208, 3771–3783 (2005).
Glassman, E. & Mitchell, H.K. Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44, 153–162 (1959).
Dent, C.E. & Philpot, G.R. Xanthinuria: an inborn error of metabolism. Lancet 263, 182–185 (1954).
Wang, J. et al. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol. 5, R69 (2004).
Dow, J.A.T. & Davies, S.A. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol. Rev. 83, 687–729 (2003).
Yang, Z., Edenberg, H.J. & Davis, R.L. Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucleic Acids Res. 33, e148 (2005).
Manak, J.R. et al. Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat. Genet. 38, 1151–1158 (2006).
Acknowledgements
This work was funded by the UK's Biotechnology and Biological Sciences Research Council (BBSRC). We are most grateful to S. Terhzaz, P. Cabrero and L. Aitchison for their guidance in dissections and S.-A. Davies and S. Goodwin for their critical reading of the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Table 1
Genes that are expressed in a single tissue in adult Drosophila. (PDF 41 kb)
Supplementary Table 2
Genes that show invariant expression between tissues. (PDF 32 kb)
Supplementary Table 3
Array probe sets against unannotated regions of the genome that show significant expression. (PDF 101 kb)
Rights and permissions
About this article
Cite this article
Chintapalli, V., Wang, J. & Dow, J. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39, 715–720 (2007). https://doi.org/10.1038/ng2049
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng2049
This article is cited by
-
Whole transcriptome screening for novel genes involved in meiosis and fertility in Drosophila melanogaster
Scientific Reports (2024)
-
Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle
Cell and Tissue Research (2024)
-
A seed expansion-based method to identify essential proteins by integrating protein–protein interaction sub-networks and multiple biological characteristics
BMC Bioinformatics (2023)
-
Fear-of-intimacy-mediated zinc transport is required for Drosophila fat body endoreplication
BMC Biology (2023)
-
Evaluation the toxicity of gold nanoparticles derived fungal biomass and plant materials through chemical and green methodologies
Biomass Conversion and Biorefinery (2023)