Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The population genetics of structural variation

Abstract

Population genetics is central to our understanding of human variation, and by linking medical and evolutionary themes, it enables us to understand the origins and impacts of our genomic differences. Despite current limitations in our knowledge of the locations, sizes and mutational origins of structural variants, our characterization of their population genetics is developing apace, bringing new insights into recent human adaptation, genome biology and disease. We summarize recent dramatic advances, describe the diverse mutational origins of chromosomal rearrangements and argue that their complexity necessitates a re-evaluation of existing population genetic methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diploid copy numbers, corresponding CNV genotypes and the underlying quantitative data from an array CGH experiment.
Figure 2: Cumulative number of RefSNP entries in dbSNP and cumulative number of variant loci in the Database of Genomic Variants, plotted as a function of time.
Figure 3
Figure 4: Estimates of fine-scale recombination rate across the 8p23 inversion.
Figure 5: Plots of population structure for 67 CNVs and 67 unlinked SNPs in 210 unrelated HapMap individuals, assuming three ancestral populations.

Similar content being viewed by others

References

  1. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jobling, M.A., Hurles, M.E. & Tyler-Smith, C. Human Evolutionary Genetics: Origins, Peoples and Disease (Garland Science, New York, 2004).

    Google Scholar 

  3. Flint, J. et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321, 744–750 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. IHMC. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  5. Conrad, D.F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Armour, J.A.L. et al. Minisatellite diversity supports a recent African origin for modern humans. Nat. Genet. 13, 154–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Sabeti, P.C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Aitman, T.J. et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851–855 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Repping, S. et al. High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat. Genet. 38, 463–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Schmutz, J. et al. The DNA sequence and comparative analysis of human chromosome 5. Nature 431, 268–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Fernandes, S. et al. A large AZFc deletion removes DAZ3/DAZ4 and nearby genes from men in Y haplogroup N. Am. J. Hum. Genet. 74, 180–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Locke, D.P. et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am. J. Hum. Genet. 79, 275–290 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fiegler, H. et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res. 16, 1566–1574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. McCarroll, S.A. et al. Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  23. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, J.L. et al. Human diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet. 71, 854–862 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Warburton, D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 49, 995–1013 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Linardopoulou, E.V. et al. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437, 94–100 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Feuk, L. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet 1, e56 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khaja, R. et al. Genome assembly comparison identifies structural variants in the human genome. Nat. Genet. 38, 1413–1418 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newman, T.L. et al. High-throughput genotyping of intermediate-size structural variation. Hum. Mol. Genet. 15, 1159–1167 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Perry, G.H. et al. Hotspots for copy number variation in chimpanzees and humans. Proc. Natl. Acad. Sci. USA 103, 8006–8011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jobling, M.A. et al. Recurrent duplication and deletion polymorphisms on the long arm of the Y chromosome in normal males. Hum. Mol. Genet. 5, 1767–1775 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, A.G., Hubisz, M.J., Bustamante, C.D., Williamson, S.H. & Nielsen, R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15, 1496–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).

    Article  PubMed  Google Scholar 

  35. Stankiewicz, P. & Lupski, J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shaffer, L.G. & Lupski, J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 34, 297–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bacolla, A. et al. Breakpoints of gross deletions coincide with non-B DNA conformations. Proc. Natl. Acad. Sci. USA 101, 14162–14167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurahashi, H. & Emanuel, B.S. Unexpectedly high rate of de novo constitutional t(11;22) translocations in sperm from normal males. Nat. Genet. 29, 139–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, M.E. et al. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc. Natl. Acad. Sci. USA 103, 17626–17631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wong, Z., Royle, N.J. & Jeffreys, A.J. A novel human DNA polymorphism resulting from transfer of DNA from chromosome 6 to chromosome 16. Genomics 7, 222–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Balakirev, E.S. & Ayala, F.J. Pseudogenes: are they “junk” or functional DNA? Annu. Rev. Genet. 37, 123–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kimura, M. The rate of molecular evolution considered from the standpoint of population genetics. Proc. Natl. Acad. Sci. USA 63, 1181–1188 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimura, M. & Crow, J.F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohta, T. & Kimura, M. A model of mutation appropriate to estimate the number of electrophoretically detectable molecules in a finite population. Genet. Res. 22, 201–204 (1973).

    Article  CAS  PubMed  Google Scholar 

  46. Valdes, A.M., Slatkin, M. & Freimer, N.B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737–749 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bayes, M., Magano, L.F., Rivera, N., Flores, R. & Perez Jurado, L.A. Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet. 73, 131–151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, L.L., Keller, M.P., Navidi, W., Chance, P.F. & Arnheim, N. Unequal exchange at the Charcot-Marie-Tooth disease type 1A recombination hot-spot is not elevated above the genome average rate. Hum. Mol. Genet. 9, 1881–1889 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Voight, B.F. et al. Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. Proc. Natl. Acad. Sci. USA 102, 18508–18513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McVean, G.A. et al. The fine-scale structure of recombination rate variation in the human genome. Science 304, 581–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Andolfatto, P. & Nordborg, M. The effect of gene conversion on intralocus associations. Genetics 148, 1397–1399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hudson, R.R., Bailey, K., Skarecky, D., Kwiatowski, J. & Ayala, F.J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136, 1329–1340 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Zondervan, K.T. & Cardon, L.R. The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Fredman, D. et al. Complex SNP-related sequence variation in segmental genome duplications. Nat. Genet. 36, 861–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Pritchard, J.K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69, 124–137 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    Article  CAS  PubMed  Google Scholar 

  59. Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321–3323 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Watkins, W.S. et al. Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res. 13, 1607–1618 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barbujani, G., Magagni, A., Minch, E. & Cavalli-Sforza, L.L. An apportionment of human DNA diversity. Proc. Natl. Acad. Sci. USA 94, 4516–4519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen, D.Q., Webber, C. & Ponting, C.P. Bias of selection on human copy-number variants. PLoS Genet. 2, e20 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X. & Frazer, K.A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Brewer, C., Holloway, S., Zawalnyski, P., Schinzel, A. & FitzPatrick, D. A chromosomal duplication map of malformations: regions of suspected haplo- and triplolethality–and tolerance of segmental aneuploidy–in humans. Am. J. Hum. Genet. 64, 1702–1708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Popesco, M.C. et al. Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains. Science 313, 1304–1307 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Przeworski, M., Hudson, R.R. & Di Rienzo, A. Adjusting the focus on human variation. Trends Genet. 16, 296–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Bubb, K.L. et al. Scan of human genome reveals no new Loci under ancient balancing selection. Genetics 173, 2165–2177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Turner, D.J. et al. Assaying chromosomal inversions by single-molecule haplotyping. Nat. Methods 3, 439–445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Slatkin, M. & Rannala, B. Estimating allele age. Annu. Rev. Genomics Hum. Genet. 1, 225–249 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Coop and C. Tyler-Smith for their comments on an earlier manuscript and to D. Andrews for data processing.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Heritability of a multiallelic CNV. (PDF 40 kb)

Supplementary Fig. 2

Haplotype patterns within a common polymorphic inversion on 8p23. (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, D., Hurles, M. The population genetics of structural variation. Nat Genet 39 (Suppl 7), S30–S36 (2007). https://doi.org/10.1038/ng2042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing